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(a) Moving people generate blending (red) and visual difference (blue) artifacts.

(b) Over-smoothing gives rise to gradient inconsistency (green) artifacts.

Figure 1: Our metric detects several kinds of HDR deghosting artifacts. In (a), Khan et al.’s [KARO06] output is shown in the bottom-left
corner and our metric’s result in the bottom-right. The same for (b), except Hu et al.’s [HGPS13] deghosting algorithm is used. Exposure
sequences are shown on the top. Cyan color occurs due to both gradient and visual difference metrics producing high output.

Abstract

Reconstructing high dynamic range (HDR) images of a complex scene involving moving objects and dynamic backgrounds is
prone to artifacts. A large number of methods have been proposed that attempt to alleviate these artifacts, known as HDR
deghosting algorithms. Currently, the quality of these algorithms are judged by subjective evaluations, which are tedious to
conduct and get quickly outdated as new algorithms are proposed on a rapid basis. In this paper, we propose an objective
metric which aims to simplify this process. Our metric takes a stack of input exposures and the deghosting result and produces
a set of artifact maps for different types of artifacts. These artifact maps can be combined to yield a single quality score. We
performed a subjective experiment involving 52 subjects and 16 different scenes to validate the agreement of our quality scores
with subjective judgements and observed a concordance of almost 80%. Our metric also enables a novel application that we
call as hybrid deghosting, in which the output of different deghosting algorithms are combined to obtain a superior deghosting
result.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene Analysis—

Motion

1. Introduction

Due to its low-cost and availability, the most commonly used HDR
image capture method remains to be the multiple exposures tech-
nique (MET), which involves combining a set of exposures of a
scene into a single HDR image [DM97]. The main requirements of
this technique are that the camera and the captured scene remain
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static throughout the capture process. Otherwise, the lack of cor-
respondence between exposures result in what is known as ghost-
ing artifacts. While stabilizing a camera can be achieved by us-
ing a tripod, ensuring a static scene is much more difficult as most
real-world scenes contain dynamic objects. Many deghosting algo-
rithms have been proposed to address this problem ranging from
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simple alignment methods to sophisticated computer vision algo-
rithms. To this date, more than 50 deghosting algorithms have been
proposed [TAEE15].

As in all fields, the proliferation of these algorithms gave
rise to subjective experiments that aim to evaluate their perfor-
mance [HT13, HTM13, HTM14, TAEE15]. However, subjective
comparisons of HDR deghosting algorithms is problematic for sev-
eral reasons. First, ideally the comparison medium must be an
HDR display [SHS*04], as otherwise some artifacts may be lost
or new artifacts may be generated during tone mapping. Secondly,
the comparison task is challenging as participants need to compare
a stack of LDR images with one or more deghosted images. Fi-
nally, the findings of subjective experiments become outdated as
new algorithms are being proposed on a rapid basis.

In order to overcome these problems, there is a clear need to
define objective metrics to compare HDR deghosting algorithms,
which is the primary goal of this paper. A number of quality as-
sessment metrics have been proposed for HDR images [RWPDI10,
Chapter 10] [SKMS06, KJFO7, RFWB07, AMMS08, MKRH11].
However, none of these metrics are suitable for evaluating deghost-
ing artifacts. The objective metric proposed in this work is the result
of analyzing the outputs of several HDR deghosting algorithms to
identify the most prevalent artifacts that are present. Some of these
artifacts and the corresponding distortion maps produced by our
algorithm are shown in Figure 1.

To validate the compliance of our metric with subjective judge-
ments of real observers, we conducted a subjective experiment that
involves 16 scenes of varying characteristics, 10 deghosting algo-
rithms, and 52 participants. We found that there is a high degree of
correlation between the subjective and objective results.

The proposed metric has several applications such as automatic
comparison of deghosting algorithms, automatic image quality in-
spection, understanding the strengths and weaknesses of existing
algorithms, optimizing parameter selection, providing feedback for
developing better HDR deghosting algorithms, and hybrid deghost-
ing in which multiple deghosting results are combined to obtain a
superior one.

2. Related Work

HDR Deghosting. With more than 50 deghosting algorithms have
been proposed within a decade, the development of deghosting al-
gorithms has been one of the most active research areas within
HDR imaging. HDR deghosting algorithms may be classified into
three main groups as moving object removal, moving object selec-
tion, and moving object registration methods, in terms of the strate-
gies used for constructing the ghost-free HDR output [TAEE15].

Moving object removal methods aim to exclude dynamic ob-
jects from the output HDR image producing the static back-
ground [KARO06, ZC10]. Moving object selection algorithms, on
the other hand, first detect motion regions by inspecting the in-
consistencies in the input pixel intensities and then seek to elim-
inate the corresponding artifacts by using samples from either a
single input LDR image [JLWO08, LC09, RWPD10] or a subset
of the input images that are found to be consistent [GGC*09,

RKC09,RC11,HLL*11,SSM12, OLK13, SPLC13, GKTT13]. Fi-
nally, moving object registration methods use local registration
techniques to identify and transfer information from the best match-
ing regions across different exposures. While some studies make
use of pixel-wise optical flow correspondences [KUWS03, ST04,
JO12, HDW14], others utilize patch-based dense matching meth-
ods [POK*11, SKY*12, HGP12, HGPS13]. For a detailed review
of HDR deghosting algorithms, we refer the reader to a recent sur-
vey by Tursun et al. [TAEE15].

Subjective Deghosting Evaluation. Recently, subjective evalu-
ation of HDR deghosting algorithms have begun to appear. Karadu-
zovic et al. [HTM13] conducted the first subjective experiment of
this kind, in which 30 participants were asked to perform pairwise
comparisons of four deghosting algorithms on nine different real-
world scenes with varying complexity. In a more recent study, Tur-
sun et al. carried out a larger subjective experiment, involving ten
different scenes, to gather the preferences of sixty-three subjects
via pairwise comparisons of six deghosting methods [TAEE15].

Image Quality Metrics. Image quality metrics are generally cat-
egorized into three classes, namely full-reference (FR), reduced-
reference (RR), and no-reference (NR) metrics. FR metrics re-
quire a ground-truth reference image in addition to the image
whose quality is to be inspected. VDP [Dal95], PSNR [TH94],
VDM [Lub95], SSIM [WBSS04], VIF [SB06], FSIM [ZZMZ11]
are some commonly used FR metrics. RR metrics, on the other
hand, do not have a ground-truth image but employ some par-
tial information about the reference [Bov05, LW09, SB11]. Fi-
nally, NR metrics do not require any information about the ref-
erence. They commonly employ knowledge about specific types
of distortions and detect their ‘signatures’ in the distorted im-
ages [WROS5, Chapter 5] [WB06, CCB11, LH11]. There are some
NR metrics as well, which depend on natural scene statistics de-
rived from artifact-free images [Sim05, SBC05, MMB12]. Alter-
natively, a number of studies learn some objective quality assess-
ment functions from a collection of images and their subjective
scores or user-selected artifacts and use them to provide NR metric
scores [TIK11,HCA*12, YKKD12,LWC*13,LKPYYLDD14].

In the literature, there are some studies for building quality met-
rics for HDR images [RWPD10, Chapter 10] [SKMS06, KJF07,
RFWB07, AMMS08, MKRH11, NMDSLC15]. These metrics op-
erate on a pair of images with arbitrarily different dynamic ranges
to which the standard quality assessment metrics cannot be directly
applied. Our objective metric differs from these previous works in
that, it is the first objective quality assessment metric designed to
detect deghosting artifacts in HDR images. It can be considered as
an RR metric as it requires the individual exposures in addition to
the deghosting output.

3. Deghosting Artifacts

We studied the outputs of several deghosting algorithms for a va-
riety of exposure sequences in order to understand what types of
deghosting artifacts are produced. The following four types of arti-
facts were found to be the most common (Figure 2).

Blending. Blending artifacts occur when a dynamic object is
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(b)
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Figure 2: Typical deghosting artifacts. (a), (c) and (e) show the blending, gradient inconsistency and visual difference artifacts, respectively
with problematic regions magnified in (b), (d) and (f). The images in this figure are obtained by directly merging the exposures without
deghosting (a, b), by selecting the best-exposed input image as the only source for each pixel (c, d), and by incorrectly setting the weight
values which causes singularities during the HDR assembly process (e, f).

blended to its background. This type of artifact is the most com-
mon for algorithms which aim to eliminate moving objects, such as
Khan et al. [KARO6], but other types of algorithms were also found
to exhibit blending artifacts to some extent.

Gradient inconsistency. Gradient inconsistencies occur when
the HDR image contains new gradients that are absent in all of the
exposures or the gradients that exist in the exposure stack are lost
in the HDR image. This type of artifacts may occur due to banding
(as new gradients will be created), blending (as gradients would be
weakened), and structural distortions.

Visual differences. Visual differences occur when the deghost-
ing result contains image details that cannot be produced from any
of its constituent exposures due to various causes such as noise and
corruption. Such differences can also be observed if a feature that
exists in all input exposures is lost in the HDR image.

Dynamic range. This refers to the loss of contrast in dynamic
regions of an exposure stack. This may happen if an algorithm
chooses a single reference exposure for a dynamic region instead
of using information from multiple exposures.

We note that not all artifacts are mutually exclusive and a single
problematic region may contain multiple types of artifacts. How-
ever, taken together, they explain the majority of the problems in
deghosting outputs.
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4. An Objective Deghosting Metric

The inputs to our metric are the input exposures with accompa-
nying exposure time and camera response information as well as
the deghosted HDR image. The outputs are the distortion maps
that show the location and the magnitude of the blending, gradient
inconsistency, and visual difference artifacts. As for the dynamic
range metric, a single scalar is produced which measures the dy-
namic range in the dynamic regions.

In all our metrics, we assume that the input exposures are aligned
either by use of a static camera or by applying a global alignment
algorithm such as median threshold bitmaps [War03]. Without this
assumption, we would have to align the images within our met-
ric, which would make our results dependent on the quality of the
alignment algorithm used.

4.1. Blending Metric

Blending artifacts occur when two or more pixels that have differ-
ent irradiance values are combined to produce an HDR pixel (Fig-
ure 2 (a-b)). The presence of this artifact can be detected if one
knows the weights, w, used during the HDR creating process as
these weights determine how much each pixel contributes to the
final result:

N
I(p) =k ;Wn(p)En(p)- (1



O. T. Tursun, A. O. Akyiiz, A. Erdem & E. Erdem / An Objective Deghosting Quality Metric for HDR Images

Here, I is the HDR image, p represents the pixel index and k repre-
sents a normalization constant' . E, is the nth exposure transferred
into irradiance domain by dividing with the exposure time and ap-
plying the sensor-specific inverse camera response function.

The essence of the blending metric is the detection of pixels
which differ in irradiance but are assigned high weights. However,
these weights are typically unknown and must first be estimated.

4.1.1. Weight Estimation

Given the set of input images £ and the HDR image I, the ac-
tual weights wy, used to reconstruct / are unknown; therefore, their
estimates W, are obtained with the following non-negative least
squares estimation:

W (p) = argmin /(p) = D(p) calz, >0, )

where W' (p) = [W](p)Wh(p)...wy(p)]" is the vector of non-
negative weight estimates for pixel p and D(p) is 3 X N dictionary
matrix of irradiance vectors from each irradiance map:

D(p) = [E1(p) | E2(p) | ... | Ex(p)] . A3)

To comply with Equation 1, we normalize the weights to obtain

the final weights that will be used in the blending metric: W(p) =

W1 (p) w2 (p) ... wn(p)]T:

a(p) = (p) | X i (p). @

For the least squares estimation, we use Lawson-Hanson [LH74]
algorithm, which recovers the non-negative HDR reconstruction
weights via ¢;-minimization [FK14]. This eliminates the need for
a regularization term in the weight estimation. We validate the ac-
curacy of our weight estimation scheme in Appendix B.

4.2. The Metric

As discussed earlier, blending artifacts occur when two irradiance
values that are different from each other are simultaneously given
high weights. We capture this phenomenon using the following
metric:

N—1 N ~ ~
os(p)=1Y, Y (Mg(m(pwm(m)

n=1 m=n+1
W (En(p), En(p)) Wan(p)). (5)
where the function g computes the similarity of its inputs:

g(¥n(p),Wm(p)) = 1— n(p) — Wm(P)‘ . (6)

The function 4’ returns the normalized Euclidean distance between
two input irradiance vectors if this distance is large and O otherwise:

0, if h(En,Em) <1

. 7
h(En,Em), otherwise,

h/ (En,Em) = {

T The normalization is performed to make the mean irradiance of the HDR
p

image equal to that of the middle exposure. It serves to simplify the com-

parisons between pixel values.

1En(p) = Em(P)ll

h(En(p)vEm(p)) = HMnm(p)HZ

(®)

max{Ey(p),En(p)}
Mum(p) = max{Ej(p),E5(p)}| . (€
max{E2(p),E5(p)}

Here, 7 represents a tolerance threshold. We assume that if the input
irradiances are similar, their blending will not cause visible blend-
ing artifacts. We have experimented with various values of t and
found that T = 0.30 gives the highest correlation with subjective
preferences and used this value for all results in this paper.

Finally, Wy, m(p) represents the joint well-exposedness of a pixel
p for exposures n and m. We use a broad-hat function to represent
well-exposedness:

wpn = 1— (2x—1)*2, (10)
Wan(p) = wpr (La(p))wah (Ln(p)).- (11)

Wam(p) attenuates the blending metric output for pixel p when one
or both of the input pixels are under- or over-exposed. In sum-
mary, the blending metric detects those pixels in the HDR image
that are created from merging well-exposed irradiance values that
differ by at least 30%. The greater the magnitude of this difference,
the higher the corresponding blending map value will be.

4.3. Gradient Inconsistency Metric

We assume that an HDR image should not contain any gradients
that do not exist in any of its constituent exposures. Similarly, if
there is a gradient in all exposures, this gradient should exist in the
HDR image as well (Figure 2 (c-d)). We capture those pixels that
fail these requirements in our gradient inconsistency map, which is
defined as follows:

06(p) = {07 if g/ (p) <t

(12)
Oc'(p), otherwise.

Akin to the blending metric, this branching on the magnitude of
the gradient difference is made to allow small gradient differences
to be tolerated. Furthermore, as a gradient is defined by its mag-
nitude and orientation, we developed separate metrics to measure
these two properties. The gradient magnitude metric is defined as:

VE,
L 91, - IVE,
Qg (p) =min ————— . (13)
e n IVEl,
. ISP IVED),
v,

where V is the image gradient computed by using Sobel’s operator,
|VEn||, and | V]|, are the mean values of |VE,||, and ||VI]|,,
respectively. Normalization with the mean values is performed to
make the gradient magnitudes of the HDR image compatible with
the gradient magnitudes of the individual exposures. The denomi-
nator ensures that the metric output is in the range [0, 1].

As for the gradient orientation, we measure the minimum angle
between the directions of gradient vectors:

Qg () = min|[(61(p) — 6a(p) +) mod 21] — |/ (14)
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The division by m scales the output value to the range [0, 1]. Fur-
thermore, gradient magnitude and orientation inconsistencies are
computed in a multi-scale fashion to capture gradient differences
in multiple scales. To this end, we compute an image pyramid of
5 levels by Gaussian smoothing and downsampling. We evaluate
Equations 13 and 14 for each pixel of each level giving rise to 5
gradient magnitude and orientation maps. We then upsample and
merge artifact maps of all levels to determine the artifact maps at
the finest level. During this process, the inconsistencies in higher
levels are given more weight than the inconsistencies in lower lev-
els as they correspond to more important gradient differences. We
found that assigning 4 times more weight to the errors at a higher
level than its immediate lower level gives the highest correlation
with subjective results. This is expected as ratio of the number of
pixels between neighboring pyramid levels is also 4.

4.4. Visual Difference Metric

Besides blending and gradient artifacts, deghosting outputs may
also contain certain artifacts that may be collectively termed as vi-
sual differences. These may be in the form of noise, corruptions,
banding, etc. To capture these general types of artifacts, we ex-
tended the HDR-VDP-2.2 metric NMDSLC15], which is the latest
and most accurate incarnation of the HDR-VDP family, to enable
comparisons between a single HDR image and multiple LDR ex-
posures.

To make the VDP metric compatible with multiple exposures,
the input images, Ly, and the HDR image, I, are scaled to set their
mean irradiance values to unity. Then for each pixel p, the mini-
mum probability obtained among each HDR-LDR pair is taken as
the probability of visual difference detection for that pixel:

Qv (p) =minV'(I(p)/I,Ln(p)/Ln), (15)

where V' is the map of the visual difference detection probability
generated by the HDR-VDP-2.2. The color encoding parameter of
HDR-VDP-2.2 is set to ITU-R BT.709 RGB and the pixels per de-
gree parameter is given as 30, which is an approximate value for a
computer screen with a standard resolution from a typical viewing
distance. Note that, this metric is not tailored for a specific type of
artifact but it reports errors for any predicted visual differences.

4.5. Dynamic Range Metric

The metrics discussed so far do not award an algorithm for produc-
ing a higher dynamic range output. However, simply producing a
higher dynamic range output is also not sufficient if the output con-
tains visual artifacts. As such, an ideal algorithm should maximize
the dynamic range without producing visually disturbing artifacts.
In this metric, we only compute the dynamic range in the dynamic
image regions. Otherwise, if the static regions have higher dynamic
range, they could mask the dynamic range in the dynamic regions.
To this end, we use a simple heuristic to estimate a dynamic region
bitmap:

0, if DR (p) <=t
DR(p) = - 16
() { 1, otherwise, (16)
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where

DR (p) =

h(ES(p), ES W, 17
Ce{r’&b}‘fr{?ﬁw[vil}( (P)s Enr1(P)) W1 (p) (A7)

In Figure 3, we demonstrate the output of this heuristic for several
dynamic scenes. The dynamic range, D, is then computed from the
HDR image pixels where DR(p) = 1. A small percentage of the
outliers are excluded to obtain a more stable measure:

Op =log1(po9s) —log o I(p19)- (18)

5. Results and Validation

In this section, we first demonstrate the visual output of our quality
metric for several deghosting algorithms applied on different expo-
sure sets. We then compare the correlation of the proposed metric
with the results of a subjective experiment. Next, we demonstrate
that existing metrics that are not specialized for HDR deghosting
are inadequate for detecting deghosting artifacts. Finally, we lever-
age our metric to illustrate an application called hybrid deghosting
in which different algorithms’ outputs are merged to obtain a higher
quality deghosting result.

5.1. Visual Evaluation

We demonstrate three sample visual outputs of our metric in Fig-
ures 1, 4, and 5. In Figure 1 (a), Khan et al.’s [KARO06] output is
shown in the bottom-left corner. The corresponding artifact maps
are shown to its right as an overlay on top of the deghosting result.
Here, and in all figures in this paper, blending artifacts are shown
in red, gradient magnitude artifacts in greeni, and visual difference
artifacts in blue. It can be seen that our metrics detect regions that
are affected by deghosting artifacts while generating only a few
false positives. In Figure 1 (b), our metric primarily reports gradi-
ent magnitude inconsistencies and visual differences for the output
of Hu et al.’s algorithm [HGPS13]. Comparison of this output with
individual exposures reveal that there is indeed a loss of details at
the back of the person as well as in the distant corridor.

In Figure 4, we demonstrate the individual as well as the com-
bined outputs of our metric. The input exposures are shown in (a)
and the deghosting result in (b). Individual maps are shown in (c) to
(f) and the combined result is shown in (g). Again, we can visually
observe that most of the problematic regions in (b) are captured by
our metric while generating only a few false positives.

Finally, we show that our metric can be used to detect artifacts in
a larger exposure sequence as shown in Figure 5. Here, seven input
exposures shown in (a) are used to obtain the deghosting result in
(b) by Silk and Lang’s algorithm [SL12]. The outputs of our metric
are shown in (c) to (f).
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(a) Scene StreetDay (b) Scene Plants

(d) Scene ToyTrain

(c) Scene Pendulum

Figure 3: Dynamic region bitmaps detected by our heuristic. Note that the bitmaps successfully capture dynamic objects such as people,
foliage, pendulum, and a toy train while generating only a few false positives.

(a) Input exposures

(c) Blending artifact (d) Grad. magnitude artifact

(e) Grad. direction artifact

(f) Visual difference

(g) Combined visualization

Figure 4: Khan et al.’s [KARO06] output showing blending, gradient inconsistency and visual difference artifacts.

5.2. Validation

To understand whether these visual observations can be general-
ized to a larger set of images, we conducted a subjective exper-
iment involving 10 deghosting algorithms belonging to different
classes (with one of them being no-deghosting as a control condi-
tion), 16 scenes of varying characteristics, and 52 participants. The
input scenes are represented in Figure 6 and their characteristics
are described in Table 1. The purpose of this experiment was to
collect subjective rating data and then evaluate the correlation of
our metric outputs with this data. The details and the results of this
subjective experiment are given in Appendix A.

As three of our metrics generate a distortion map whereas partic-
ipants assign a single quality score, we computed a global quality
score from each distortion map, i, as follows:

0i=-1Y 0ip)/IPl, 19)

peP

where each quality metric is substituted for i and |P| represents the
number of image pixels. The result is negated to yield more nega-
tive scores for worse results. As for the dynamic range metric, we

' overlay visualizations, we only show gradient direction artifacts for
clarity. As we show later, they have a significant overlap with gradient mag-
nitude artifacts.

directly used the dynamic range in dynamic regions (Equation 18).
We computed the Pearson and Spearman correlation coefficients
between these scores and the aggregate ratings obtained from the
subjective experiment. As both correlations were very similar, here
we only report the Pearson correlation results (full results are given
in supplementary materials).

Furthermore, we experimented with two modes in which our
metric scores are computed. In the first mode, we directly com-
puted the metric outputs as defined by Equation 19. In the second
mode, we first computed a visual saliency map using Itti et al.’s
model [IKN98] using the deghosting output as the input image to
this model®. Using the saliency maps helps us to take into account
the visually important image pixels in estimating the metric scores.
We then computed the weighted average of the saliency map with
the distortion maps:

0;=-Y Vi(p)S(p)/IPl, (20)
peP

where S(p) represents the saliency map value. We found that using
saliency only improves correlations for the gradient metrics while

8 We used the implementation by Jonathan Harel: A Saliency Implemen-
tation in MATLAB: http://www.klab.caltech.edu/~harel/
share/simpsal.
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(a) Input exposures

(b) Deghosting Output (c) Blending Map

sistency

(d) Grad. Magnitude Incon- (e) Grad. Direction Inconsis-

R —

(f) Visual Difference Map
tency

Figure 5: Metric outputs for scene ToyTrain using 7 exposures with the algorithm of Silk and Lang [SL12].

StreetNight Museum 1 S Museum3
M Az 1 »

E

Cars Pedestrians Fountain Yard

Figure 6: The representative images of the

having a slightly adverse effect for the blending metric. This could
be because the image regions that contain blending artifacts are not
that salient due to the softened appearance of objects. The dynamic
range metric produces a single scalar value so it is inappropriate
to be used in this equation. Finally, the extended VDP metric is a
self-contained model which is already based on visual perception,
so we did not try to combine it with the saliency map.

As can be seen in Table 2, all our metrics are positively corre-
lated with the subjective experiment results. The aggregate correla-
tions of all metrics except Qf;',mg are above 0.50 with the extended
VDP being the highest (0.68) followed by blending (0.66), gradi-
ent direction (0.62), dynamic range (0.59), and gradient magnitude
(0.49) metrics. As for the consistency across scenes, blending met-
ric yields the lowest standard deviation (0.14) followed by VDP
(0.21), dynamic range (0.21), gradient direction (0.23), and gradi-
ent magnitude (0.31).

Next, we evaluated the correlation of the individual metrics with
each other for all scene-algorithm combinations. This was per-
formed to understand the degree of the overlap between the outputs
produced by different metrics. Table 3 summarize these results. Ac-
cording to this table, there is a high degree of correlation between
the gradient magnitude and direction metrics. As the latter has a
higher mean correlation and lower standard deviation, we decided
to drop the gradient magnitude metric for improved reliability.

The analyses of the individual scenes reveal that these metrics
support each other. In some scenes, they all have high correlations
with subjective ratings (scenes Pendulum and ToyTrain) while in

(© 2016 The Author(s)
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Pendulum

Turtles Building Flames ToyTrain

input scenes used in the experiment.

others one or two metrics make up for the low correlation of other
metrics. For example in scene StreetNight the Qp and Qp have high
correlations (0.68 and 0.66 respectively) whereas QG, , QG, o and
Qy have low correlations (0.06, —0.15, and 0.24). Thls suggests
that combining these metrics to yield a single quality score could
in fact produce a higher correlation than all metrics taken alone.
To test this hypothesis, we computed a unified deghosting quality
metric (UDQM) score Qp for each deghosting result as a weighted
sum of the individual metrics:

Qv =[0B QXGQI_'_ Qv Op 1] [wg wg wy wp we]T, (21

where w; indicates the weight of the quality score i and we is the
weight of the constant term, which will be used during the regres-
sion analysis.

In order to find the best weights, we used adaptive simulated
annealing [1*96] for maximizing the average Pearson correlation
between Qp and subjective ratings. For simulated annealing, the
initial temperature is set to 7y = 100 and the following annealing
schedule is used:

T =0.95"T;, (22)

where k is the annealing parameter. The probability of acceptance
function is:

P= ; (23)

1 +ex i
P max(7T;)
l
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Table 1: Properties of the scenes used in the experiment.

Scene | Properties

StreetNight | Walking person with some distance to the
camera, outdoors, night, motion blur
Museum1 | Walking person close to the camera, indoors
Museum?2 | Mostly static high contrast scene with a person
in one exposure
Museum3 | Movement of a close person across a high con-
trast distant door
StreetDay | Multiple moving people, outdoors, day
Plants | Complex motion of plants across sunset
Exit | Person exiting from dark indoors into sunny
outdoors
Pendulum | Complex motion of objects with specular
highlights

Cars | Fast motion of cars across sunset
Pedestrians | Slow motion of pedestrians across sunset
Fountain | Complex motion of water fountain with
crowded background
Yard | Multiple people walking away from the cam-
era

Turtles | Relatively still water with changing reflections
Building | Closeby person walking in front of large win-
dows
Flames | Complex motion of flames
ToyTrain | Movement of a toy train along tracks with

flashing lights

where AFE is the difference between the present and past values of
the energy function and 7; is the current temperature of component
i. No upper and lower bounds are imposed on the metric weights;
however, the resulting value of vector w is normalized to have a
length of 1. The normalization has no eftect on the value of the en-
ergy function (i.e. average Pearson correlation) and it is only per-
formed to have metric weights with comparable scales in different
scenes for our analysis.

We performed leave-one-out cross-validation (LOOCV) to help
validate if the weights learned from all images except one is a good
indicator for the left-out image. The individual weights estimated
by using adaptive simulated annealing after leaving out each one
of the images is given in Table 4. We observed that the estimated
weights are consistent with each other. The mean LOOCYV value is
found to be 0.77 with a standard deviation of 0.14. This high corre-
lation and low standard deviation suggest that the weights learned
from a subset of the scenes (training) can be used to estimate the
quality of outputs that are not part of the dataset (testing). There-
fore, to produce our final set of weights we have included all scenes
in the optimization, which resulted in the weights shown in Table 5.

As an additional validation of the proposed weights, we used
them to compute a UDQM score for a set of images used in
an independent subjective experiment performed by Tursun et
al. [TAEE15]. Our goal was to investigate how well the computed
scores correlate with the subjective responses from an entirely inde-
pendent dataset. The experiment was a pairwise comparison exper-

Table 2: Pearson correlations of the individual metrics with subjec-
tive ratings.

Scene | Op 0L O Op Qv

dir mag
StreetNight | 0.68 0.06 -022 0.66 0.24
Museuml | 091 0.87 085 0.65 0.65
Museum2 | 0.66 0.56 045 057 0.76
Museum3 | 0.70  0.67 0.18 028 041
StreetDay | 0.85 0.55 034 062 0.85
Plants | 0.57 0.76 0.64 0.63 0.82
Exit | 0.65 0.32 0.07 049 025
Pendulum | 0.82 0.77 059 073 0.83
Cars | 0.60 0.63 0.79 051 0.58
Pedestrians | 0.57 0.39 0.33 0.84 0.78
Fountain | 0.65 0.82 043 020 0.70
Yard | 0.55 0.39 027 051 0.72
Turtles | 0.51 0.81 084 093 0091
Building | 0.65 0.73 0.81 0.52 0.81
Flames | 0.39 0.76 0.66 040 0.67
ToyTrain | 0.78 0.79 076 094 0.85

Average | 0.66 0.62 049 059 0.68
Std.Dev. | 0.14 023 031 021 0.21

Table 3: Pearson correlation coefficients between absolute metric
scores in all scene-algorithm combinations.

| O Qp Qg Op Oy

mag

O 1.00  0.60 045 -051 053
SG;_ 0.60  1.00 083 -024 0.64
S

(0% 045 083 1.00 -021  0.66

mag

Op | -051 -024 -0.21 1.00 -0.51
Qy | 053 0.64 0.66 -0.51 1.00

iment involving 7 deghosting algorithms and 10 scenes. We com-
puted the number of times an algorithm was selected over another
one as the rating of that algorithm (as given in Tables 3 and 4 of Tur-
sun et al. [TAEE15]), and then correlated the UDQM scores with
those ratings. The resulting correlations are given in Table 6. As can
be seen from this table, we obtained a mean Pearson correlation of
0.65 with 0.20 standard deviation. Although the mean correlation
was somewhat smaller than the correlation of the experiment con-
ducted in this paper, it is still high enough to be predictive of the
algorithms’ performance.

Finally, we performed an analysis to understand how well an in-
dividual participant’s responses correlate with the mean responses
of all participants except herself. As we had 52 participants in
our experiment, this produced 52 correlation scores with the mean
score being 0.75 and the standard deviation 0.22. Given that our
mean UDQM correlation for the test set was 0.77 with a standard
deviation of 0.14, it is not unreasonable to assume that our com-
bined metric’s responses resemble that of an average observer.

(© 2016 The Author(s)
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Position | (EV -1)  Position 1 (EV 0) L(EV +l)  Position 2 (EV -1)

—
(b) Ground truth 1

(¢) Ground truth 2 (d) Ground truth 3

Position 2 (EV 0)

(a) Input exposures for three different positions of the mug

Position 3 (EV -1) Position 3 (EV 0) Posilign 3 (EV +1)

“Position 2 (EV +1)

(e) Output HDR (f) Difference Map (g) Our metric results

Figure 7: Comparison of our metric result (g) with the absolute difference (f) between the output of Silk and Lang [SL12] (e) and ground
truth HDR (c). The input exposures with EV -1, 0 and +1 are shown in (a). For each position of the moving object, the ground truth HDR

image obtained by using the input exposures is given in (b-d).

Table 4: Best metric weights found in LOOCV and their corre-
sponding Pearson correlations in training and testing scenes. The
scene which is left out is given in the first column.

Scene | wg wG wp wy We Train Test

StreetNight 0.548 0.722 0.025 0.035 0.420 0.79 0.63
Museum1 0.510 0.413 0.021 0.051 0.753 0.77 0.87
Museum?2 0.495 0.822 0.031 0.045 -0.276 0.77 0.88
Museum3 0.449 0.891 0.035 0.048 -0.036 0.79 0.59
StreetDay 0.794 0.600 0.023 0.044 -0.090 0.77 0.86

Plants 0.631 0.491 0.018 0.036 -0.600 0.78 0.78
Exit 0.415 0.881 0.030 0.036 0.223 0.80 0.43
Pendulum 0.628 0.705 0.025 0.036 0.325 0.77 0.89
Cars 0.547 0.780 0.028 0.043 0.299 0.78 0.75
Pedestrians 0.539 0.810 0.023 0.028 0.230 0.78 0.82
Fountain 0.086 0.813 0.035 0.037 -0.573 0.78 0.64
Yard 0.425 0.898 0.033 0.031 0.106 0.78 0.72
Turtles 0.695 0.717 0.024 0.027 -0.039 0.78 0.80
Building 0.424 0.848 0.032 0.037 -0.315 0.78 0.80
Flames 0.248 0.934 0.041 0.072 0.244 0.77 0.90
ToyTrain 0.411 0.905 0.034 0.056 0.094 0.77 0.95

Average 0.490 0.764 0.029 0.041 0.048 0.78 0.77
Std. Dev. 0.169 0.151 0.006 0.011 0.361 0.01 0.14

Table 5: Best metric weights obtained using adaptive simulated an-
nealing [1796].

wB wG WD wy We

0427 0811 0.029 0.037 0.397

5.3. Comparison with Other Quality Metrics

In this section, we demonstrate the outputs of the two of the po-
tentially relevant quality metrics, namely the dynamic range inde-
pendent quality metric (DRIM) [AMMSO08] and a blind deblurring
quality metric [LWC™*13]. The former metric is selected as it can
compare images with different dynamic ranges and the latter is
selected because deblurring artifacts may be somewhat similar to
deghosting artifacts.

The distortion map produced by the DRIM for the images shown
in Figure 1 are shown in Figure 8. To compute these results, the
middle exposure of the exposure sequence is compared against the
deghosting output. In DRIM outputs, red indicates reversal of con-

(© 2016 The Author(s)
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Table 6: Pearson correlation coefficients of Qp from the dataset of
Tursun et al. [TAEE15] using the weights in Table 5.

Cafe Candles FastCars Flag Galleryl Gallery2
0.90 0.67 0.64 0.27 0.64 0.61
LibrarySide Shopl Shop2 ‘WalkingPeople Average Std. Dev.

0.95 0.66 0.43 0.71 0.65 0.20

(a) DRIM (Khan et al. [KARO06])

(b) DRIM (Hu et al. [HGPS13])

Figure 8: The DRIM [AMMSOS] outputs for two sample scenes.
In DRIM, blue represents amplification of contrast, green loss of
contrast, and red reversal of contrast. Our metric results were shown
in Figure 1.

trast, green loss of contrast, and blue amplification of contrast. We
can see that although the DRIM metric detects problematic regions
it also generates many false positives which correspond to mostly
static parts of the scenes (blue regions). As such, the DRIM metric
is not suitable to be used for detecting deghosting artifacts.

The blind deblurring metric of Liu et al. [LWC™*13] produces a
single quality score instead of a distortion map. In order to calcu-
late this quality score, all input HDR images are tone mapped with
the tone mapping operator of Reinhard et al. [RSSF02] and gamma
corrected (y = 2.2). For no-reference ringing detection, the origi-
nal metric uses the blurry input image in addition to the deblurred
images. As we do not have a blurry input image in our scenario,
instead we used the image obtained by directly merging the expo-
sures without applying deghosting. We generated the quality scores
for all scenes used in the subjective experiment and computed the
correlations with participant ratings. As shown in Table 7, this met-
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Table 7: Pearson correlations for Liu et al.’s [LWC* 13] deblurring
metric with the subjective experiment.

Exit Pendulum Cars Pedestrians Fountain Yard

0.16 -0.01 0.30 0.64 0.11 0.50
Turtles StreetNight Building Flames ToyTrain Museum1
0.76 0.08 -0.24 -0.22 0.24 0.22
Museum2 Museum3 StreetDay Plants Avg. Std.
0.36 -0.21 0.33 0.58 0.23 0.30

ric has a low correlation with subjective ratings and therefore is not
suitable to be used as a deghosting quality metric.

5.4. Comparison with Ground Truth

In order to show how well our metric captures the visual artifacts,
we prepared ground truth HDR images and computed the absolute
difference map between the deghosting result and one of the ground
truth HDR images for comparison with our metric output. For this
purpose, we captured three exposures with EV —1, 0 and +1 for
three different positions of an object in Figure 7 (a). After this pro-
cess, we created a ground truth HDR image for each position of
the object in the scene (b, ¢, d). Then we applied the deghosting
algorithm of Silk and Lang [SL12] to create an HDR image using
EV —1, 0 and +1 from object positions 1, 2 and 3, respectively
(e). We chose the ground truth 2 as the reference for creating the
difference map since it was visually the most similar ground truth
image to the deghosting result. The minimum and g9gth percentile
absolute radiance differences were then scaled between 0O (black)
and 1 (white) for visualization in the difference map (f). Our metric
output is shown in (g). It can be observed that the highest responses
of our metrics correspond to the pixels with largest absolute differ-
ences. This figure also shows that the visual difference metric is
more sensitive to the artifacts over a larger area while blending and
gradient inconsistency metrics give more localized responses.

5.5. Application: Hybrid Deghosting

Finally, we demonstrate that by leveraging our metric one can
combine the outputs of multiple deghosting algorithms to obtain
a higher quality deghosting result. To perform hybrid deghosting,
we first calculated the UDQM map for each one of the input HDR
images. We then extracted the binary mask of pixels from each im-
age, which will contribute to the hybrid HDR. A pixel is marked
in the corresponding binary mask if it has the best UDQM value
among all the input HDR images. Before combining the images
by using Laplacian blending according to these masks, we applied
histogram matching to ensure that the irradiance distributions of the
two images are similar.

Two sample outputs are provided in Figures 9 and 10. In Fig-
ure 9, we combined Lee et al.’s [LLM14] output with a simple
deghosting approach, which involves selecting the middle expo-
sure in all dynamic regions. In Figure 10, on the other hand, Hu
et al. [HGPS13]’s and Lee et al.’s [LLM14] results are combined
using their distortion maps. In both figures, the combined outputs
have fewer artifacts than the individual results.

It should be noted, however, that hybrid deghosting is not suit-
able to be used for all pairs of algorithms, especially for those
which select different reference exposures. In such cases, multi-
ple copies of the same object could appear in the combined result.
An example of this limitation is shown in Figure 11, where the
inconsistency of the HDR images due to the difference in object
positions result in a hybrid HDR image with noticeable blending
and gradient inconsistency artifacts.

6. Conclusion and Future Work

In this paper, we described an HDR deghosting quality metric,
comprised of individual metrics tuned for different types of arti-
facts, and showed that they correlate well with visual observations
and subjective preferences. The first application that our metric en-
ables is automatic quality evaluation of deghosting algorithms. By
using our metric, one can often avoid comprehensive subjective
experiments which are both tedious and may become outdated as
new algorithms are proposed. Secondly, the proposed metrics can
be used to optimize parameter selection for deghosting algorithms.
For instance, a deghosting method of choice may be run in batch-
processing mode and allowed to explore a parameter space until it
finds the combination that gives the least distortions as computed
by our metric. Our metric can also be used to rapidly assess the
strengths and weaknesses of different algorithms for different im-
ages sets and ultimately design improved algorithms. Finally, as
demonstrated in the last section, our metric also enables a novel
application called hybrid deghosting, whereby multiple deghosting
results are combined to obtain a higher quality result.

Using our metric to provide feedback for artifact removal is a
natural research direction to improve the outcomes of the HDR
deghosting algorithms. As a more ambitious future work, we plan
to explore a no-reference quality metric which takes only the
deghosted HDR image as input, but not its constituent exposures.

A. Subjective Experiment

In order to validate the compatibility of our metrics with
subjective preferences, we conducted a subjective experiment
involving 10 deghosting algorithms and 16 scenes. The se-
lected algorithms were: Grosch [Gro06], Khan et al. [KARO06],
Sen et al. [SKY*12], Silk and Lang’s [SL12] fluid-motion
(FM) and pairwise-downweighting (PWD) methods, Srikantha et
al. [SSM12], Hu et al. [HGPS13], Lee et al. [LLM14], a simple
deghosting approach based on using a single reference image in all
dynamic regions, and no deghosting as a control condition. These
algorithms were selected as representatives of different types of
deghosting approaches. They range from simple point operations
to sophisticated computer vision algorithms.

We acquired the source codes and/or executables of each of
these algorithms from the original authors except for Khan et
al.’s method [KARO6], which we implemented ourselves. We also
slightly modified Silk and Lang’s algorithm [SL12] to prevent it
producing NaN values due to mathematical singularities.

As for the input scenes, we created a dataset of diverse char-
acteristics with both indoor and outdoor environments and motion
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(b) )

Figure 9: The outputs of Lee et al. [LLM14] (a-b) and simple deghosting approach (c-d), our results for Lee et al. [LLM14] (e-f) and simple

deghosting approach, and our hybrid deghosting result (i-j).

(b) (Y]

() @

Figure 10: The outputs of Hu et al. [HGPS13] (a-b) and Lee et al. [LLM14] (c-d), our results for Hu et al. [HGPS13] (e-f) and Lee et

al. [LLM14], and our hybrid deghosting result (i-j).

Figure 11: The hybrid HDR image in (c) is obtained from two HDR
outputs of Srikantha et al. [SSM12] (a) and Lee et al. [LLM14] (b),
which are inconsistent with each other in terms of object positions.

patterns with varying complexities. Each scene was captured using
3 exposures (-1, 0, +1 EV) with a Canon DSLR camera in RAW
format. These scenes are depicted in Figure 6 and their properties
are summarized in Table 1.

Due to a large number of algorithm/scene combinations, we per-
formed an online rating experiment. The experiment started by a

(© 2016 The Author(s)
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warm-up trial to familiarize the participants with the web-interface.
The interface consisted of thumbnails of three individual exposures
on the left and ten deghosting results on the right. The selected ex-
posure and the deghosting result were shown in higher resolution
side-by-side in the middle of the screen. Hovering the mouse over
these images brought a zoomed-in view of the region under the cur-
sor to allow detailed analysis.

The participants’ task was to give a rating between 0 and 100 for
each deghosting result by setting the sliders below each thumbnail.
To facilitate these ratings, we marked 0, 25, 50, 75, and 100 values
as ‘very bad’, ‘bad’, ‘medium’, ‘good’, and ‘very good’ quality,
respectively. However, the participants could assign any rating be-
tween 0 and 100 with a step size of 5 (e.g. a good image could be
rated as 75 whereas a slightly better one as 80). After each trial, the
participants viewed the next set of images by pressing the ‘Next’
button at the bottom of the page. The experiment took between
30 to 40 minutes for each participant. We discarded partially com-
pleted experiments to have equal number of ratings for all condi-
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Figure 12: Average ratings of the compared algorithms in the sub-
jective experiment. The red lines indicate the standard error.

tions. In total, 52 participants finished the experiment in its entirety
and their mean ratings are shown in Figure 12.

B. Validation of Weight Estimation

We evaluated our weight estimation scheme to determine how well
it can recover the actual weights used during the HDR creation.
To this end, we created three HDR images using three different
weighting functions, namely triangular (w7), broad-hat (wpg ), and
Gaussian (wg) functions. These functions were defined as follows:

wr(x) =1—=12(x—0.5)], (24)
wen (x) =1— (2x—1)*2, (25)
wg(x) = exp(fZS()ch.S)z)7 (26)

where x is the normalized pixel value. The correlation between the
estimated weights and the actual weights were found to be moder-
ate (in the range [0.3,0.6] for different weighting functions). This
is expected as there may be many different set of weights which
produce the same HDR pixel from a set of LDR pixels. The critical
requirement should be that the final HDR images that are obtained
with the actual weights and the estimated weights should be highly
correlated. These correlation values were found to be greater than
0.99 for all three weighting functions.

We performed a follow-up experiment to evaluate the similar-
ity of the blending maps obtained using the actual weights and
estimated weights. As shown in Figure 13, an artificial exposure
sequence was created, which contained a single moving object.
We combined these exposures using a triangular weighting func-
tion and without ghost removal to obtain the results shown in (b).
We then computed the blending map using these known weights as

shown in (c). Next, we estimated the weights from the HDR image
and the input exposures using our weight estimation scheme. The
blending map computed from these estimated weights are shown in
(d). These two blending maps are visually very similar and have a
Pearson correlation coefficient of 0.96 when 3 input exposures are
used. We then used 7 input exposures to understand how well our
weight estimation scheme can deal with a larger number of expo-
sures and found a correlation of 0.88 between the maps computed
from the actual and estimated weights. The HDR image obtained
from the estimated weights shown in (e) is also highly correlated
with the HDR image reconstructed by using the actual weights (b).

These experiments support that the estimated weights can be re-
liably used to detect blending artifacts in most cases. The only lim-
itation of our scheme is that if two irradiance values are linearly
dependent to each other. In that case, the deghosting algorithm may
have assigned non-zero weights to two different exposures with dif-
ferent but linearly dependent irradiance vectors, producing a ghost
artifact. This type of artifact is not detected by our blending metric
as our /1-minimization would assign a non-zero weight only to the
higher irradiance pixel value. However, in practice, the probability
of having linearly dependent color vectors in the same pixel of two
different exposures is low due to noise.

Another implication of our weight estimation scheme is that if
the number of exposures is larger than the number of color chan-
nels, the non-negative least squares estimation algorithm performs
a sparse recovery of the weights. As a result, the number of non-
zero elements in o is limited to 3 in our case, even if the number
of input exposures is greater than 3. However, this does not pre-
clude detecting blending artifacts as shown in the bottom row of
Figure 13. It simply means that we can detect the blending artifacts
caused by the three highest irradiance pixels.
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