
Saccade Landing Position Prediction for Gaze-Contingent Rendering

ELENA ARABADZHIYSKA, Saarland University, MMCI and Intel Visual Computing Institute

OKAN TARHAN TURSUN, MPI Informatik

KAROL MYSZKOWSKI, MPI Informatik

HANS-PETER SEIDEL, MPI Informatik

PIOTR DIDYK, Saarland University, MMCI and MPI Informatik

S
ta

n
d

a
rd

O
u

rs

(a) Saccade initialization (b) Saccade (saccadic suppresion) (c) Saccade end (d) Saccade end + latency

Foveated region as seen by an observer Rendered foveated regionGaze locationSaccade trajectory

Fig. 1. Standard gaze-contingent rendering (top row) updates the image according to the current gaze prediction. Due to the system latency, during a saccade,

there is a significant mismatch between the rendering and the actual gaze position (b, c). The method moves the foveated region to the actual gaze position

only a�er a delay equal to the system latency (d). Our technique (bo�om row) predicts the ending position of the saccade at its early stage and updates the

image according to the new prediction as soon as it is available (b). Due to the saccadic suppression the user cannot observe the image manipulations during

the saccade (b). When the saccade ends and the suppression is deactivated (c), the observer sees the correct image at the new gaze position with our method.

Gaze-contingent rendering shows promise in improving perceived quality by

providing a better match between image quality and the human visual system

requirements. For example, information about �xation allows rendering

quality to be reduced in peripheral vision, and the additional resources

can be used to improve the quality in the foveal region. Gaze-contingent

rendering can also be used to compensate for certain limitations of display

devices, such as reduced dynamic range or lack of accommodation cues.

Despite this potential and the recent drop in the prices of eye trackers, the

adoption of such solutions is hampered by system latency which leads to

a mismatch between image quality and the actual gaze location. This is

especially apparent during fast saccadic movements when the information

about gaze location is signi�cantly delayed, and the quality mismatch can

be noticed. To address this problem, we suggest a new way of updating

images in gaze-contingent rendering during saccades. Instead of rendering

according to the current gaze position, our technique predicts where the

saccade is likely to end and provides an image for the new �xation location

as soon as the prediction is available. While the quality mismatch during

the saccade remains unnoticed due to saccadic suppression, a correct image

for the new �xation is provided before the �xation is established. This paper

describes the derivation of a model for predicting saccade landing positions

and demonstrates how it can be used in the context of gaze-contingent
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rendering to reduce the in�uence of system latency on the perceived quality.

The technique is validated in a series of experiments for various combinations

of display frame rate and eye-tracker sampling rate.

CCS Concepts: •Computingmethodologies→ Perception;Rendering;

Image manipulation;

Additional Key Words and Phrases: gaze-contingent rendering, perception,

saccadic suppression, saccade prediction, new display technology, virtual

reality

ACM Reference format:

Elena Arabadzhiyska, Okan Tarhan Tursun, Karol Myszkowski, Hans-Peter

Seidel, and Piotr Didyk. 2017. Saccade Landing Position Prediction for Gaze-

Contingent Rendering. ACM Trans. Graph. 36, 4, Article 50 (July 2017),

12 pages.

DOI: http://dx.doi.org/10.1145/3072959.3073642

1 INTRODUCTION

Despite the constant improvement of hardware, meeting the quality

demands regarding spatial and temporal resolutions, stereoscopic

presentation, and scene complexity required in current applications

is still a challenging problem. This is manifested in the recent devel-

opments of new mobile platforms as well as virtual and augmented

reality (VR/AR) systems, where both the quality and energy e�-

ciency are limiting factors that have to be tackled to enable full

adoption of these technologies. With the recent advances in a�ord-

able eye-utracking technology, the above problems can be addressed

by exploiting properties of the human visual system (HVS). Themost
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prominent example is foveated rendering techniques [Guenter et al.

2012; Murphy and Duchowski 2001; Patney et al. 2016; Vaidyanathan

et al. 2014] which take advantage of the decay in visual acuity to-

wards the periphery [Banks et al. 1991; Curcio et al. 1990; Grüsser

and Grüsser-Cornehls 1986], and provide high image quality only

for the fovea. This leads to improvements both in the rendering time

and quality. A similar principle can be employed to improve realism

and viewer experience by simulating depth-of-�eld e�ects [Mantiuk

et al. 2011] and local luminance adaptation [Jacobs et al. 2015], re-

ducing the vergence-accommodation con�ict during a stereoscopic

presentation [Duchowski et al. 2014], or enhancing depth impres-

sion by gaze-driven disparity manipulations [Kellnhofer et al. 2016].

Although gaze-contingent rendering can lead to signi�cant im-

provements, it is very sensitive to system latency [Saunders and

Woods 2014]. When gaze location changes rapidly during saccades,

even short delays may result in visible artifacts which make the

gaze-contingent rendering unfavorable. This problem is alleviated

to some degree by the saccadic suppression, which lowers the sensi-

tivity of the HVS during saccades [Ross et al. 1996, 2001; Volkmann

et al. 1978]. However, the HVS sensitivity is fully restored just 40–

60ms after the saccade ends, and this process is gradual, so even

shorter delays can be noticed depending on the magnitude of the

changes [Loschky and Wolverton 2007]. Therefore, displaying an

updated image after saccade completion is critical, and any delays

may limit the bene�ts of gaze-contingent rendering. In practice,

to prevent problems with system latency, high-end equipment has

to be used. Guenter et al. [2012] performed their experiments us-

ing a 300Hz eye tracker with a 120Hz display, which resulted in

an overall latency of 20–40ms. While such displays are becoming

a commodity, high-quality rendering rarely achieves such frame

rates. An alternative to keep both the rendering quality and the

frame rate high is to use e�cient upsampling techniques, such as

“Spacewarp” and “Timewarp” [Oculus VR 2016a,b]. This, however,

does not overcome the problem of latency. Also, 300Hz eye track-

ers are prohibitively expensive for regular users. As a result, the

gaze-contingent systems introduce signi�cant latency which leads

to visible artifacts such as the perception of low-quality image from

the peripheral rendering.

To address this problem, we propose a new technique for control-

ling gaze-contingent rendering during saccades. The key idea is to

maximally exploit the saccadic suppression when it is the strongest,

i.e., during saccades. Instead of placing the foveated region at each

gaze position as soon as it is provided by the eye tracker, our method

�xes it to a predicted saccade landing position (Figure 1). The pre-

diction is continuously adjusted during the saccade for new gaze

direction samples so that the delay with which the correct image

appears is minimized when the saccade ends. During the saccade,

the mismatch between the actual gaze direction and the rendering

is hidden by the saccadic suppression. In this work, we propose a

method for predicting the saccade landing position. It accounts for

both within- and between-participant saccade variability as well

as inaccuracies of modern eye trackers. We demonstrate how the

prediction can be used in the context of gaze-contingent rendering

to alleviate the problem of system latency. Our user experiments

validate the accuracy of the predictions and the quality improve-

ments when our strategy is applied. To provide further insights, we

use di�erent combinations of display frame rate and eye-tracking

sampling rate in our tests. We present the following contributions:

• measurements and analysis of saccade trajectories,

• a newmodel for predicting the landing position of saccades,

• a comparison of several prediction techniques based on our

measurements, and

• two experiments which validate both a subjective and an

objective quality increase when our method is applied in a

gaze-contingent rendering system.

2 BACKGROUND AND PREVIOUS WORK

In this section, we motivate our work by discussing recent advances

in gaze-contingent rendering.We also provide basic facts on saccadic

suppression, which enables our technique. Finally, we describe the

mechanics of saccadic eye motion trajectories and discuss previous

work on their prediction.

2.1 Gaze-Contingent Rendering

The sensitivity of the HVS to luminance contrast, color, and depth

is not equal across the visual �eld. It is highest in the fovea and

declines signi�cantly towards the periphery [Noorlander et al. 1983;

Prince and Rogers 1998; Strasburger et al. 2011]. This is in agreement

with the variation of photoreceptor density across the retina [Curcio

et al. 1990], and the volume of neural circuitry that further processes

the foveal and peripheral signal, i.e., cortical magni�cation [Grüsser

and Grüsser-Cornehls 1986]. This leads to distinct characteristics

of foveal (high-quality) and peripheral (low-quality) vision [Banks

et al. 1991], where the foveal vision is usually assumed to span 1–5°.

These �ndings can be bene�cial in rendering systems that use eye

tracking devices. In foveated rendering, the key idea is to increase

rendering performance by providing lower quality to the peripheral

vision. This has been successfully demonstrated for spatial resolu-

tion [Guenter et al. 2012; Stengel et al. 2016; Swa�ord et al. 2016;

Vaidyanathan et al. 2014], level-of-detail control [Duchowski et al.

2009], and color [Duchowski et al. 2009]. Gaze-contingent rendering

can also help overcome certain display limitations. Simulating the

depth-of-�eld e�ect leads to improved realism [Mantiuk et al. 2011;

Mauderer et al. 2014], as well as better depth perception [Vinnikov

and Allison 2014] and reduction of visual discomfort [Duchowski

et al. 2014] for stereoscopic displays. Gaze-driven stereo disparity

manipulations can not only improve visual comfort by reducing the

vergence-accommodation con�ict, frame violation, and crosstalk

[Hanhart and Ebrahimi 2014], but also enhance depth perception

[Kellnhofer et al. 2016]. In tone mapping, the dynamic range can be

allocated e�ectively by reducing the image contrast with eccentric-

ity [Jacobs et al. 2015].

All these techniques respond to the gaze direction updates as

provided by an eye tracker. In practice, this information is delayed

by an accumulated latency of the eye tracker, rendering, and display

system [Saunders and Woods 2014]. Many authors report prob-

lems with excessive latency which may lead to user dissatisfaction

[Duchowski et al. 2014; Mantiuk et al. 2011], reduced task perfor-

mance, or even user sickness [Draper et al. 2001; Frank et al. 1988].

In this work, we address this problem for situations where the de-

lays in gaze direction are the most signi�cant, i.e., during fast eye
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movements called saccades. To this end, we propose to predict the

saccade landing location (Section 2.3) at its early stage and provide

an image for the new �xation location before the �xation. Addition-

ally, the image update is performed during the saccade when the

HVS sensitivity is reduced by the saccadic suppression (Section 2.2).

This makes the update imperceptible. As shown in our experiments,

this strategy signi�cantly reduces the impact of accumulated system

latency and improves the quality of gaze-contingent rendering.

2.2 Saccadic and Post-Saccadic Suppression

Saccades are rapid eye motions which align the fovea with the

region of interest for the best resolution of spatial details. During the

saccades, a stable depiction of the surrounding world is attributed to

the so-called saccadic suppression, which strongly compresses the

sensory information [Ross et al. 2001; Volkmann et al. 1978]. There

are three main factors contributing to this suppression. The �rst

is the retinal smear due to fast eyeball rotation and relatively long

time integration, which results in luminance contrast reduction for

higher spatial frequencies [Volkmann et al. 1978]. The second is the

visual masking that occurs in the presence of retinal-image motion

[Diamond et al. 2000]. The third is the neural inhibition of luminance

contrast, where the strongest compression is observed for motion

sensing mechanisms, in particular for lower spatial frequencies

that are usually enhanced due to retinal pattern motion [Ross et al.

2001]. The saccadic suppression is substantial but not complete.

It is initialized around 50ms before the saccade, and, at its peak,

amounts to 0.5 log units of threshold elevation [Volkmann et al.

1978]. It is known that the saccadic suppression diminishes towards

the end of the saccade, but there is a disagreement regarding its

peak. While Volkmann et al. [1978] report the peak of suppression

in mid-saccade, Ross et al. [2001] observe that the suppression is

strongest at the beginning.

A weak suppression also extends beyond the saccade – a so-called

post-saccadic suppression. Loschky and Wolverton investigated the

e�ect in the context of gaze-contingent rendering [Loschky and

Wolverton 2007, Figure 3] and showed that a local change in the

spatial resolution could be perceived when performed 5ms after the

saccade completion. Similarly, Bodelón et al. [2007] demonstrated

that grating orientation can be detected already after 8.4ms. The

HVS sensitivity is fully restored in 40–60ms after the saccade ends

[Diamond et al. 2000; Loschky and Wolverton 2007; Volkmann et al.

1978]. Shortly after that, the sensitivity can even be enhanced [Volk-

mann et al. 1978, Figure 5].

From the above discussion, it is clear that the HVS sensitivity to

image changes continuously increases starting from mid-saccade,

and it quickly recovers or even exhibits enhancements at the early

post-saccadic stage. Current gaze-contingent rendering techniques

rely on both saccadic and post-saccadic suppression (Section 2.1) and

continuously update images according to new eye-tracking samples

even during the post-saccadic stage. However, the higher the latency

of the system, the more likely such updates will be detected as

distortions. In practice, the updates are quite limited, which greatly

reduces potential bene�ts from gaze-contingent rendering. The goal

of our work is to avoid signi�cant image updates towards the end of

the saccade and later on. This reduces the risk of performing major

changes in the post-saccadic stage.

2.3 Saccade Landing Position Prediction

Saccade velocity and duration cannot be voluntarily controlled, and

normally, the oculomotor system follows a preprogrammed ballistic

motion trajectory [Kowler 2011]. Although it has been demonstrated

that, in some cases, the central nervous system is capable of chang-

ing the trajectory of the saccades in �ight, it takes approximately

70ms for visual information to travel from the retina to oculomotor

mechanisms of the brain [Leigh and Zee 2015, Chapter 3]. Since the

duration of saccades usually falls between 20 and 80ms, there is

not enough time to respond to stimuli during the saccade. A large

body of work has been dedicated to analyzing saccade ballistics. For

example, it has been demonstrated that there is a linear relationship

between the duration and the amplitude of saccades [Bahill et al.

1975]. On the other hand, the same work showed that the relation

between the duration and the peak velocity (the main sequence) is

nonlinear. Moreover, velocity pro�les of short saccades are sym-

metric. This, however, does not hold for medium and long saccades

whose pro�les are skewed towards their beginning [Van Opstal and

Van Gisbergen 1987].

The ballistic characteristics have been exploited for modeling

saccades. Anliker [1976] and Paeye et al. [2016] assume symmetrical

velocity pro�les, and predict the landing position essentially by

doubling the distance traveled until peak velocity. Yeo et al. [2012]

de�ne saccade velocity pro�les using a bell-shaped curve for simu-

lating HVS dynamics during object tracking. As all of these solutions

assume symmetry of the velocity pro�les, they can be used only for

short saccades [VanOpstal andVanGisbergen 1987]. Han et al. [2013]

propose a method based on �tting a compressed exponential func-

tion to the eye trajectory. In contrast to our work, they focus on

providing short-term predictions (10ms), while we aim to predict

landing positions. Komogortsev and Khan [2009] propose the Ocu-

lomotor Plant Kalman Filter (OPKF) that can handle both tasks, and

accounts for many anatomical eye properties. A number of anatomy-

inspired complex plant saccade models exist, such as [Zhou et al.

2009], but they are less suitable for real-time, gaze-contingent appli-

cations as they are not designed to perform prediction [Han et al.

2013]. Based on the OPKF model, Komogortsev and Khan proposed

a computationally e�cient chi-square test whose peak value is cor-

related with the saccade amplitude [Komogortsev et al. 2009b]. This

model can predict the saccade landing position at an early stage and

can be used for fast target selection in gaze-guided computer inter-

action [Komogortsev et al. 2009a]. However, the model was tested

only for a single, large (5°) target, and only horizontal saccades were

considered. In Komogortsev et al. [2009b], an average prediction

error of 5.41° was reported for a similar model, where again only

horizontal saccades were considered, while the model proposed by

Anliker [1976] performed best in such conditions with an average

error of 3.46°.

In contrast to the previous work, we propose a simple yet e�cient

and accurate model which provides landing position prediction at

early stages of the saccade with a continuous re�nement. The model

can be integrated into any gaze-contingent rendering system at a

negligible computational cost. Additionally, our model covers a wide

range of saccades, and it is independent of their direction. We argue

that these are crucial features for gaze-contingent rendering. To
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our knowledge, we are also the �rst to demonstrate and analyze

the performance of gaze-contingent rendering with this type of

prediction.

3 ONLINE PREDICTION OF THE SACCADE LANDING

POSITION

In our modeling, we aim to predict the landing position of saccades

to update gaze-contingent rendering early enough to reduce the

delays coming from the latency of the system. The greatest challenge

in building such a system is robustness. Standard gaze-contingent

rendering su�ers from latency; however, the introduced delay is

always consistent. When a prediction is used, even small errors

may lead to catastrophic failures which will result in clearly visible

artifacts, and therefore, user dissatisfaction. Our goal is to create a

system which is robust to �uctuations of eye-tracking data arising

from instabilities in eye movements, as well as from eye-tracker

errors.

To this end, we follow the assumption that saccades obey ballistic

trajectories which are determined mainly by saccade amplitude.

Even though this assumption does not hold completely, as other fac-

tors may in�uence saccades (Section 5), we demonstrate that it leads

to a simple yet powerful and robust model that provides signi�cant

improvements in gaze-contingent applications (Section 4). To gain

knowledge about saccade characteristics, we �rst perform measure-

ments to collect samples of many saccades performed by several

participants (Section 3.1). After analyzing the collected data (Sec-

tion 3.2), we construct a computational model (Section 3.3) that cap-

tures the characteristics of di�erent saccades and uses eye-tracker

samples to predict their landing positions.

3.1 Measurements

We conducted a user experiment to collect a large amount of data

associated with di�erent saccades. To evoke saccades, participants

were asked to focus on a target stimulus, which was a white dot

on a uniform 50%-gray background shown on a screen operating at

60 FPS. The target changed its position when the user pressed a key

after �xation. The target positions were pre-generated and shu�ed

so that di�erent saccade amplitudes, spanning a range of 5°–45°,

were equally represented in the collected data. The data collection

was performed with an eye tracker at 300Hz sampling frequency.

The eye tracker allows free head movement during tracking; never-

theless, we used a chin-rest to improve the tracking accuracy. The

viewing distance was �xed to 70 cm, which resulted in a coverage

of 46 × 27 visual degrees. 22 participants with normal or corrected-

to-normal vision took part in our measurements. The eye tracker

was calibrated for each participant. Every participant performed at

least 300 saccades which were recorded during a 5-minute session.

Figure 2 shows our setup and gaze data recorded from one of our

participants.

System Details. In all our experiments, including the validation

described in Section 4, we used a Tobii TX300 eye tracker, capable

of 300Hz, 120Hz and 60Hz sampling rates. The display was a 27”

2560× 1440 ASUS ROG Swift PG278Q which supports 60Hz, 120Hz

and 144Hz refresh rates. The CPU and GPU of our platform were

an Intel(R) Xeon(R) E5-1620 v3 @ 3.50GHz and NVIDIA GeForce

GTX 660, respectively. The software system used was our own C++

implementation based on OpenGL.

Fig. 2. Our measurement setup and a sample subset of eye-tracking data

from one participant. The white circles visualize saccade targets shown

during the experiment, whereas the blue traces correspond to eye-tracker

samples. For simplicity, only 12 targets are visualized here. Throughout the

actual experiment, 300 consecutive targets were shown to each observer.

3.2 Data Processing

The data recorded in the experiments includes both saccades and

�xations. To build our model, we need to extract eye-tracking sam-

ples corresponding to saccades. Detecting saccades can be easily

performed in a post-processing step by analyzing velocity pro�les.

However, in order to be consistent with how the saccades will be de-

tected in gaze-contingent rendering techniques, we opt for a robust

analysis that is suitable for on-line data. Several techniques have

been proposed and analyzed in this context [Andersson et al. 2016;

Salvucci and Goldberg 2000]. For our purpose, we found that the

velocity threshold method (I-VT) provides satisfactory results. I-VT

relies on the fact that the saccades are very fast eye movements

and detects them as soon as the high velocity of eye movement is

observed. We denote the detection threshold as Vd and refer to the

�rst gaze sample whose velocity exceeds Vd as the detection point.

For the saccade detection to be robust, Vd has to be relatively

high, usually above 100°/s . This means that the true beginning of the

saccade is much earlier than the detection point. To obtain all the

past samples of the saccade, we scan the gaze samples backward in

time to �nd the beginning. Due to the inherent noise of eye trackers

and small movements of the eye, the velocity is always positive even

during �xations. Therefore, we employ a two-step procedure similar

to Dorr et al. [2010] by introducing another velocity threshold,

Va . The �rst sample where the measured gaze velocity is equal

to Va is the anchor point, i.e., beginning of the saccade. Due to

discrete sampling of eye trackers, it is unlikely that a sample with

this exact velocity will be found in practice. Therefore, we introduce

an additional sample for velocity Va , by interpolating between the

�rst sample for which the velocity is over Va and the previous

sample. We also use a velocity threshold to detect the end of the

saccade and refer to the �rst sample whose velocity drops below

Vf as the end point. Additionally, we treat samples occurring up

to 15 ms after the end point as a part of the saccade to account for

potential corrective saccades called glissades, which are typically

not larger than 0.5°–2° [Holmqvist et al. 2011, Ch. 2]. We ignore

the glissades detected separately by removing the detections which

are shorter than 15 ms. For increased robustness, we only take the

saccades whose anchor points are found within a 30 ms interval
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Fig. 3. Visualization of our data processing for one sample saccade. Top:

Gaze samples for a saccade from the bo�om-right corner to the top-le�

corner of the screen. Bo�om: The gaze velocity and displacements. Samples

corresponding to the anchor, detection and the end points are indicated in

green, cyan and yellow colors, respectively. Captured with a Tobii TX300

eye tracker at 300Hz sampling frequency.

before the detection. If tracking is lost during a saccade, it is not

used for training our model. Please see Figure 3, which shows the

anchor, detection, and end points for a sample saccade.

We de�ne each saccade, Sk , as a set of subsequent gaze samples

from the eye tracker:

Sk = {sk0, sk1, sk2, ..., skN }, (1)

where sk0 is the gaze sample corresponding to the anchor point of

the saccade and skN is the end point of the saccade. The gaze samples

are expressed in terms of triplets:

skl = 〈tkl ,dkl ,θkl 〉, (2)

where tkl is the timestamp, dkl is the displacement and θkl is the

direction of the sample. tkl , dkl and θkl are measured with respect

to the anchor point; therefore,

tk0 = 0, dk0 = 0, θk0 = 0. (3)

This representation is similar to the polar coordinate system where

the origin is the anchor point of the saccade and dkl corresponds to

the radial coordinate, while θkl corresponds to the polar angle. dkl
is measured in terms of visual degrees instead of pixels to make it

independent of the distance between the observer and the screen.

Given our representation, the amplitude of saccade Sk is de�ned

as

|Sk | = dkN , (4)

and the direction as

∠Sk = θkN . (5)

The choice of velocity threshold is crucial for robustness to noise

and small involuntary eye movements. Saccades involve very fast

eye motion; therefore, they achieve speeds that cannot be observed

during other eye movements. Usually, the achieved velocity during

a saccade exceeds 100°/s . Consequently, we set Vd = 130°/s . Possible

misses of very short saccades are not very problematic as these

usually do not lead to problems in gaze-contingent rendering. Also,

smooth-pursuit eye movements are successfully �ltered out by this

detection threshold as they rarely reach velocities above 80°/s [Daly

1998; Meyer et al. 1985]. For the anchor point, the velocity threshold

Va needs to be chosen such that we do not include eye-tracking

samples corresponding to �xations. We observed that a good choice

of the threshold may depend on the participant, as di�erent eye-

tracking noise and involuntary movements can be observed for

di�erent participants. However, for better generalization, we de-

cided to choose a conservative value that reduces the probability

of including �xation samples as saccades in our training data. Con-

sequntly, we set Va = 60°/s , which is used in all our experiments.

We set the threshold for the end point accordingly as Vf = 60°/s . All

our choices remain in agreement with the general characteristics of

saccades’ velocity pro�les described by Boghen et al. [1974].

3.3 Model

The problem of predicting the landing position can be de�ned as

estimating |Sk | and ∠Sk for every timestamp tkl during the saccade,

i.e., before dkN and θkN are actually observed. As the trajectories

of most saccades are linear or approximately linear [Leigh and Zee

2015, Ch. 3], our estimate for the direction of the saccade, ∠̂Sk , at a

point with timestamp tkl is equal to the direction of the last observed

gaze sample:

∠̂Sk (tkl ) = θkl . (6)

Because of the di�erent acceleration, deceleration, peak velocity

and duration characteristics, the displacement observed at a speci�c

time after the anchor point depends on the amplitude of a saccade.

Figure 4a shows how displacement pro�les change with respect to

di�erent saccade amplitudes. The characteristics of this change are

captured in the data that we collected in our experiment (Section 3.1).

The displacement pro�les tend to form a consistent surface in the

3D space where the x- and y-axis are the displacement and time

axes, while the z-axis corresponds to the amplitude values (see

Figure 4b-4c).
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Fig. 4. Displacement profiles of one participant for di�erent saccade amplitudes are given in (a). The corresponding prediction surface is shown from two

di�erent viewing angles in (b) and (c) with the saccade amplitude in the z-axis. Standard deviation of the prediction surface across all participants is given in

(d). For simplicity, only 5 individual saccades are shown in (a), (b) and (c). We collected more than 300 saccades from each participant.

We treat the amplitude prediction as a regression problem. Based

on the collected data, we seek a function f that estimates the saccade

amplitude given a displacement dkl at a given time period tkl from

the beginning of the saccade to the current samples. Formally, we

de�ne our prediction as:

|̂Sk |(tkl ) = f (tkl ,dkl ), (7)

and require function f to minimize:
∑

k,l

(|Sk | − f (tkl ,dkl ))
2
. (8)

While the amplitude function f (tkl ,dkl ) gives us a direct predic-

tion of saccade length, it is also possible to model the displacement

during saccades as a function of time and amplitude. This may po-

tentially provide a more stable solution, as modeling the steep part

of f for small values of displacement and time (Figure 4) might be

problematic. To this end, we also consider a function д that mini-

mizes: ∑

k,l

(dkl − д(|Sk | , tkl ))
2
. (9)

The prediction of saccade length using д requires a linear search

that, for a given timestamp tkl and displacement dkl , �nds |̂Sk | such

that |̂Sk | = д(|Sk | , tkl ). More formally,

|̂Sk |(tkl ) = argmin
x

(dkl − д(x , tkl ))
2
. (10)

Both Equations 7 and 10 perform prediction based only on the last

sample from the eye tracker. This does not account for information

provided by all saccade samples. To investigate whether all sam-

ples can provide a better prediction, we modify the prediction in

Equation 10 to account for all the samples:

|̂Sk |(tkl ) = argmin
x

l∑

n=1

(dkn − д(x , tkn ))
2
. (11)

E�ectively, this prediction takes all saccade samples observed until

time tkl and tries to �nd |̂Sk | such that the saccade pro�le best �ts

function д.

Both of the functions f and д can be realized using di�erent pa-

rameterization techniques. In order to �nd the best technique, we

compare predictions provided by a polynomial �tting and an inter-

polation. To this end, for each method, we treat every participant

separately and �nd a personalized polynomial �t or an interpolation

grid that minimizes Equation 8 or Equation 11. To determine the

degree of the polynomials and to avoid over-�tting, we analyze

cross-validation errors for polynomial degrees ranging from 1 to

7. According to this analysis, polynomial degrees 5 for t and 2 for

d provide the lowest cross-validation error for the largest number

of participants. Although it is possible to optimize the polynomial

degrees for each participant separately, this procedure did not pro-

vide better �ts in our experiments. Consequently, we used a �xed

degree for all polynomial-based models. To enable interpolation,

we remove multiple measurements corresponding to the same pairs

(tkl ,dkl ) by applying a 2Dmedian �lter on saccade amplitudes. This

step also reduces the e�ect of noise and outliers. The size of the

�lter is 0.5° for the displacement and 2 ms for the time dimension.

We use 80% of our saccade measurement data (Section 3.1) to

build prediction models for all methods described above. Later, we

use the remaining 20% for testing to compare their performance. The

mean absolute error as well as the standard deviation of the error

are shown in Figure 5 for all prediction methods. Both the prediction

accuracy and standard deviation of the prediction error improve

during the course of the saccade. This, as expected, is a result of

diverging behavior of displacement pro�les for di�erent saccade

amplitudes (Figure 4a). The best performing method in terms of er-

ror and standard deviation is the interpolation based on Equation 7

whose mean error drops below 4° in the middle of the saccade and is

less than 1° at 80% of the normalized saccade time. This magnitude

of prediction error is signi�cantly smaller than the typical foveal

region size in gaze-contingent rendering [Patney et al. 2016, Fig.

8]. Interestingly, the best prediction is based on only one (the last)

sample from the eye-tracking data, which means that our prediction

does not bene�t from including all of the saccade samples. This

might be related to less reliable information provided by the sam-

ples at the early stage of the saccades. In addition, we measure the

variability of interpolation-based model between participants (see

Figure 4d). The high variance at the beginning of the saccades sug-

gests that their characteristics di�er signi�cantly between subjects,

which supports the choice of using personalized models.
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Fig. 5. Comparison of di�erent predictionmodelingmethods. Le�: themean

absolute error as a function of normalized saccade time. Right: the standard

deviation of the mean absolute error.

Fig. 6. Gaze samples (yellow), landing position predictions (green) and cor-

responding prediction intervals (blue) for a sample saccade. The beginning

of the saccade (orange), gaze samples and predictions are shown as the

square, diamond and circular shapes, respectively. Color saturation level

of the points indicates the time when each sample is observed and each

prediction is made (more saturated color indicates more recent sample and

prediction). Arrows connect gaze samples with our model’s corresponding

predictions for the landing position.

We compared the prediction performance of our method with

that of Anliker [1976]. We observe that this method results in high

prediction errors caused by severe undershooting for large saccades

due to the violation of symmetry in velocity pro�les (Figure 5, left).

This suggests that any prediction method based on the symmetry

assumption (including symmetric curve �tting approaches [Paeye

et al. 2016]) would likely su�er from the same type of inaccuracy.

Average Model. In addition to personalized models, we further

investigated the possibility of replacing them with one averaged

model which gives the �exibility of predicting saccade amplitudes

without the training step. To derive the average models, we used

the same procedure as for the personalized models, but with a leave-

one-out cross-validation strategy which removes one participant for

the training stage. Figure 7 shows how much personalized models

improve the mean absolute error compared to the average model

both for interpolation and the polynomial �t approach. As expected,

for most of the participants personalized models provide better

prediction, by up to 30% (1°). This might be explained by the high

variance between pesonalized models (Figure 4d). Interestingly, the

personalized model of one participant performs about 10% worse

than the average model, which might be related to the high mea-

surement noise observed during the data recording session for this

participant. The comparison suggests that although in most cases

the personalized model leads to improved predictions, the average

model is a practical alternative. Here we report the average model

that results from the polynomial �t approach:

fpoly (t , d ) = − 10.19t + 19.11t
2 − 17.15t

3
+ 6.251t

4 − 0.7552t
5

− 23dt + 26.89dt
2 − 14.74dt

3
+ 3.882dt

4 − 0.4005dt
5

− 11.84d
2
t + 9.326d

2
t
2 − 2.583d

2
t
3 − 0.01058d

2
t
4

+ 0.06587d
2
t
5
+ 20.18d + 5.071d2 + 18.15,

(12)

where t = (tkl − 47.39)/33.4 and d = (dkl − 14.67)/11.72 are

the time and displacement measurements normalized with their

respective means and standard deviations from the training data.

For the personalized models and the gaze data collected from all

participants, please refer to the supplementary materials of this

paper.
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Fig. 7. Le�: The mean absolute error of personalized models is compared

with that of the average models using interpolation and polynomial fi�ing.

Right: The amount of improvement in the mean absolute errors when per-

sonalized models are used instead of the average model for each participant.

Prediction Intervals. Saccades may exhibit variance due to the

noise in the �ring of motoneurons, target detection inaccuracy of

the participant, and measurement inaccuracies [Smeets and Hooge

2003] (Section 5). The information about the within-participant vari-

ance is captured in our data. We compute 95th -percentile prediction

intervals over the interpolation grid for both the direction and am-

plitude predictions. Figure 6 demonstrates the prediction intervals

for each prediction made during the saccade. Please note how the

size of the intervals gets small very quickly. The animation visualiz-

ing the process can be seen in the supplementary video. Although

we use these intervals only for visualization purposes, we believe

that they provide additional information that could be used in the

gaze-contingent rendering or gaze-driven interaction techniques.
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Application of the Model. To apply our prediction during a gaze-

contingent rendering, we replace eye-tracker samples that corre-

spond to saccade samples with our prediction. To detect saccade

samples, we apply the same strategy as described in Section 3.2. We

start using our technique as soon as the saccade is detected at sam-

ple sk1. From that point, all predictions are accepted until we detect

the end of the saccade, making skN−1 the last substituted sample.

After this sample, we switch to the standard gaze-contingent ren-

dering method which directly uses the samples from the eye tracker.

To make the method more robust to noise, we exclude saccades

for which the direction changes by more than 5° for the �rst three

consecutive gaze samples at the 300Hz sample rate and by more

than 12.5° at the 120Hz sample rate. In such cases, the detection

is regarded as a false positive, and we switch to the standard gaze-

contingent rendering which updates the position of the foveated

region according to the most recent gaze sample. For all the samples

that are classi�ed as saccade samples, we compute the prediction

based on the predicted direction (Equation 6) and the amplitude

(Equation 7 and 10). The predicted saccade amplitude |̂Sk |(tkl ), and

direction ∠̂Sk (tkl ), are transformed into a vector representing 2D

screen coordinates as follows:

p(tkl ,dkl ) =
[
s
(x )

k0
+ h

(
|̂Sk |(tkl )

)
cos

(
∠̂Sk (tkl )

)
,

s
(y)

k0
+ h

(
|̂Sk |(tkl )

)
sin

(
∠̂Sk (tkl )

)]ᵀ
,

(13)

where s
(x )

k0
and s

(y)

k0
are the horizontal and vertical coordinates of

the anchor point on the screen, respectively, and h(.) is the function

which converts the displacement in visual angles to pixel displace-

ment on the screen plane. Next, instead of using the current eye-

tracker sample for updating gaze-contingent rendering, we use our

prediction. We store the prediction model as an interpolation look-

up table or polynomial coe�cients for each participant. The whole

prediction adds a negligible cost to the gaze-contingent method

as it involves a simple lookup and interpolation, or evaluating a

polynomial.

4 VALIDATION

To validate our strategy for updating gaze-contingent rendering, we

performed two user experiments. In the �rst one, we used simple,

synthetic stimuli to demonstrate that our prediction can signi�-

cantly reduce the delay in updating gaze-contingent rendering after

saccades. The second experiment demonstrates a more natural sce-

nario when foveated rendering is used to render natural scenes. By

allowing the user to freely explore the content, we measured the

in�uence of our technique on the user experience. Furthermore, we

validated our technique for three di�erent combinations of display

frame rates and eye-tracker sampling frequencies to investigate the

in�uence of system latency on the performance of our method. The

viewing setup as well as the hardware used in these experiments

was the same as in our measurements (Section 3.1).

4.1 Guided-Viewing Experiment

The goal of the �rst experiment was to demonstrate that our tech-

nique can lead to quicker updates of the foveated region. To this end,

we designed a simple experiment which was inspired by foveated

rendering techniques. The stimulus consisted of four di�erently ori-

ented Landolt C shapes arranged in a 2× 2 grid. Three of them were

sharp, and one was blurred (Figure 8, top). The size of each shape

was 0.4°, the entire 2 × 2 grid was 1.2°, and the standard deviation

of the Gaussian blur was 0.04°. During the experiment, the stimuli

appeared in di�erent locations. Each time the orientations of the

Landolt C shapes (up, down, left, right), as well as the position of

the blurred one, were chosen randomly. Each time the gaze predic-

tion was in some proximity to the stimulus center (7°) the blur was

removed to reveal the masked shape. In half of the cases, appearing

in random order, the gaze sampling from the eye tracker was used

directly; in the rest of the cases, our prediction was used. The task

of the participants was to indicate the orientation of the Landolt C

shape that was blurred. After receiving the choice of the participant,

a new stimulus was displayed at a di�erent position. The idea was

that any delays in gaze-contingent rendering would result in an

associated delay in removing the blur. Therefore, the longer the

delay in the image update, the easier it was to spot which shape

was blurred.

This type of blur-removal strategy simulates the foveated region

update scheme used in gaze-contingent rendering. If the update lags

behind the actual gaze position as in the standard gaze-contingent

applications, the participant will arrive at the stimulus position

before the blur is removed and will be able to indicate the shape that

was blurred. On the other hand, if our method is used, the foveated

region will already be moved to the stimulus position before the

arrival of the observer; therefore, the position of the blur will be

harder to determine.

Nine participants with normal vision took part in this experiment.

For each participant, we used his personalized model to predict

saccade landing positions. Each participant saw 300 stimuli for

which they indicated the orientation of the blurred Landolt C shape.

The experiment took approximately �ve minutes. We used an eye-

tracking sampling frequency and display frame rate of 120Hz and

60 FPS, respectively. Figure 8 (bottom) shows the ratio of correct

responses averaged across all participants. For presentation pur-

poses, we grouped the data according to the amplitude of saccades.

For all cases, the number of correct answers was lower when our

prediction was used. This indicates that for our update strategy,

the blur was removed earlier, e�ectively reducing the in�uence of

the system latency. The results for medium and large saccades are

statistically signi�cant according to Fisher’s exact test (p < 0.001).

For large saccades, the ratio of the correct responses for our method

is very close to the expected value of purely random choice (0.25).

The di�erence between the two update strategies is not signi�cant

for the shortest saccades. Probably this is related to the proximity

of the stimulus to the foveated region, i.e., the stimulus that appears

very close to the current �xation location is already in the foveated

region and no blur is applied.

The results of this experiment demonstrate that our prediction

is fast and accurate enough to reduce the in�uence of the system

latency causing delays in gaze-contingent rendering. As we were

not able to demonstrate an advantage for our technique for the

shortest saccades, in the rest of our experiments, we modify our

prediction model to respond only for medium and long saccades.

This is done by raising the detection velocity threshold Vd to 180°/s .
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This, in accordance with Boghen et al. [1974], eliminates saccades

shorter than 10°.

4.2 Free-Viewing Experiment

The �rst experiment con�rms that our prediction technique allows

us to move the region with high rendering quality to the new �x-

ation locations sooner than standard gaze-contingent rendering.

However, this does not guarantee that our technique is free of any

artifacts and that it provides better perceived quality in general.

Therefore, in the second experiment, we validated the performance

of our technique in a free-viewing scenario. To this end, we imple-

mented a simple method that imitates a standard foveated rendering

technique. Inspired by recent gaze-contingent rendering techniques

[Guenter et al. 2012; Patney et al. 2016], the radius of the high-

quality rendering region was set to 6.5°, and the render quality of

the periphery was reduced by applying a Gaussian �lter with the

standard deviation of 0.5°. There was a smooth transition between

the peripheral and foveal regions which spanned 9°. Using this ren-

dering technique, we conducted a pairwise comparison experiment

in two scenarios: one when our prediction was used and the other

one without the prediction. In addition to evaluating our prediction

using the personalized model, we also measured the prediction per-

formance of the average model. Furthermore, to investigate how

the performance changes for systems with di�erent latency charac-

teristics, we considered three di�erent combinations of eye-tracker

sampling frequency and display frame rate settings: (120Hz, 60 FPS),

(120Hz, 30 FPS), and (60Hz, 30 FPS). As our display could not run

at a native 30 FPS, the frame rate was simulated by frame repetition.

Figure 9 (top) shows 10 images used in this experiment.

Nine participants with normal vision and naïve to the purpose

of the test performed the experiment with their personalized mod-

els. In each trial, participants were shown an image rendered with

our foveated rendering method described above. They could switch

freely between the version with and without prediction and inves-

tigate the quality without any time constraints. The participants

were asked to indicate which version provided higher-quality and

more stable images. Each participant investigated all ten images,

which took approximately 5 minutes. Images were shown in the

native resolution of the display and spanned a visual �eld of 46°×27°.

The experiment was performed separately for each combination of

display frame rate and eye-tracker sampling frequency settings. 6

participants repeated the whole session with the average prediction

model, in addition to the personalized model. Participants were

allowed to take breaks between sessions or continue the experi-

ment at a di�erent time if they felt fatigue. The eye tracker was

re-calibrated at the beginning of each experiment and when the

frame and sampling rate settings were changed.

We collected all the responses and analyzed them using a two-

sample t-test with a signi�cance level of 95%. Figure 9 (bottom)

shows the ratio of cases where the foveated rendering with our

prediction was chosen. In all cases, the prediction led to a higher

preference. For all scenarios, the improvement provided by the

personalized model over the no-prediction scenario is statistically

signi�cant. The personalized model also obtained higher scores than

the average model; however, we fail to show a signi�cant di�er-

ence between the performance of the personalized and the average
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Fig. 8. Top: Four sample synthetic stimuli, each consisting of four Landolt’s

C shapes. The size of each stimulus was 1.2°. During the experiment, the

orientations and the index of the blurry shape was randomly chosen. The

blur was removed when the foveated region moved to the position of the

stimulus. Bo�om: Results of the user experiment. A value closer to 0.25

(expected success ratio with purely random choice) is considered more suc-

cessful at hiding potential artifacts due to the transition from non-foveated

to foveated rendering at the position of the stimulus. The error bars corre-

spond to the standard deviation across participants.

model (p > 0.45). This observation, combined with our previous

�ndings (see Figure 7), suggests that the average model is a feasible

alternative for the personalized model, even though personalization

has the potential to improve the prediction for some of the partici-

pants noticeably as shown in Figure 7 (right). We also observed that

the advantage of using our techniques decreased for setups with

higher latency: (120Hz, 30 FPS), and (60Hz, 30 FPS). Although the

participants still showed a signi�cant preference for rendering with

the prediction (p < 0.03), the results are not as remarkable as in the

case of (120Hz, 60 FPS). In fact, the di�erence for (120Hz, 30 FPS)

and (60Hz, 30 FPS) setups becomes statistically insigni�cant for the

average model (p > 0.65). In an informal interview after the exper-

iment, participants frequently reported “tunnel vision” or sudden

“pop-up” e�ects for both ours and standard foveated renderings in

the 60Hz sampling rate and 30 FPS case. Many people suggested

that the instabilities are visible in both techniques, and therefore,

the di�erence between them becomes less obvious. This agrees with

the fact that for displays with a lower frame rate, e.g., 30 FPS, an

image update requires 33.3ms in the most optimistic case, which is

less than the duration of short saccades. This time might therefore

be insu�cient to provide image updates before the shorter saccades

end. This suggests that for the (120Hz, 60 FPS) setup our technique

successfully overcame the problem of latency. For the systems with

higher latency, even though we provided an earlier estimation of

the next �xation location, this might not have been early enough to

overcome the latency problem completely.
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Fig. 9. Top: Insets of the images used in the free-viewing experiment. The

size of each image is 2560 × 1440 pixels. Bo�om: Results of the free-viewing

experiment. The error bars correspond to the standard deviation across

participants.

Head-Mounted Display. We also have experimented with a head-

mounted system (Oculus DK2 + Pupil Labs’ eye-tracker). We ran a

preliminary experiment, similar to the one which was used for the

stationary system but with stereoscopic images. Five naïve partici-

pants took part in this experiment; they compared standard foveated

rendering with a method using our personalized prediction derived

with the desktop setup (Section 3.3). We repeated the experiment for

75 FPS and 45 FPS. The sampling rate of the eye tracker was 120Hz.

Each participant performed 28 comparisons in total. The rendering

with prediction was preferred in 54% and 69% of all comparisons

for the �rst and the second setup. Although these results already

suggest that our prediction can be directly applied to head-mounted

displays, we encountered several hardware problems which, we

believe, a�ect the results. First, the quality and the resolution of

the screen, especially the blur towards the boundaries of the visual

�eld introduced by the lenses, make the e�ect of gaze-contingent

rendering more subtle. Second, the quality of the data provided by

the eye tracker is very sensitive to tiny movements of the headset

with respect to the head of the viewer. In particular, small changes in

the relative distance between the observer and the screen introduce

errors in the conversion from the on-screen location to visual angles.

Moreover, we also observed that our eye tracker often loses the gaze

direction and takes a signi�cant amount of time to recover. Some

of these problems are already addressed in stationary eye trackers,

and we believe that this will also be the case for future HMDs as the

technology matures. For these reasons, although the initial results

are promising, we leave the application of our prediction strategy

to head-mounted setups as future work.

5 DISCUSSION AND FUTURE WORK

As demonstrated in the previous section, our technique can provide

signi�cant gains when compared to a standard gaze-contingent

rendering. In this section, we discuss potential improvements that

could be made based on our assumptions by further extending our

model.

Within-subject Variability. Our data-driven prediction model is

based on a ballistic saccade approximation, and for a given pair of

time stamp and gaze displacement, it returns a single prediction for

the saccade amplitude value. However, it is known that there is a

statistical within-subject saccade variability [Leigh and Zee 2015,

Ch. 3]. For example, the peak velocity of saccades with similar am-

plitude may depend on the given task, saccade direction, initial and

�nal orbital orientations of the eye, learning, or even on a day-by-

day basis [Bollen et al. 1993; Smeets and Hooge 2003]. The overall

good performance of our average prediction model shows that, in

practical applications, such a saccade variability may be regarded

as another source of noise similar to the measurement noise of the

eye tracker. We initially experimented to incorporate such factors

into our model, but the amount of improvement was observed to be

insigni�cant. In addition, our performance measurements already

included the e�ects of such deviations from the ideal saccade behav-

ior by having participants in our experiments take part in multiple

sessions, at di�erent times of day and with di�erent tasks. While

inaccurate predictions cannot be removed online, we make an e�ort

to minimize the e�ect of the conditions which are known to result

in unreliable predictions. In such cases, we fall back to the standard

gaze-contingent rendering. One example of this is raising the de-

tection threshold to Vd = 180°/s to prevent participant-dependent

tremor-like eye motions from triggering a false saccade detection.

Between-Subject Variability. The elimination of between-subject

variability by the personalization of the prediction model leads to a

further improvement in the prediction accuracy (Figure 7, right). The

potential drawback is that the method requires a model-�tting step.

At present, we train the personalized models o�ine. However, our

initial experiments indicate that this can be done while running a

particular application of gaze-contingent rendering. Such a method

could start with our average prediction model and then �ne-tune it

on the �y using new saccade samples as they are detected. This could

also potentially account for some factors that a�ect within-subject

variability, such as fatigue or task-dependent variability. Another

advantage of the personalized data-driven model is that it naturally

accounts for certain aspects of saccade variability such as corrective

glissades [Holmqvist et al. 2011, Ch. 2].

Users with Corrective Glasses. The refractive power of corrective

glasses bends the light rays on the way from the screen to the

eyeball, which a�ects themeasurements of saccade amplitudes when

expressed in terms of visual angle. For example, a basic spherical

lens that is used to correct nearsightedness (myopia) mini�es the

world, which e�ectively means that the time needed to complete

the saccade between a pair of points on the screen is shorter for

the same person with glasses than without glasses. This obviously

a�ects the precision of our average prediction model, which was

obtained only from participants with normal vision. In an informal

ACM Transactions on Graphics, Vol. 36, No. 4, Article 50. Publication date: July 2017.
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study we observed that our personalized model could compensate

for a medium spherical lens correction, while it failed for more

complex progressive glasses with an astigmatic component. We

relegate to future work the extension of our personalized model to

handle diverse prescriptions of corrective glasses. Use of contact

lenses does not a�ect the performance of our prediction model.

Fixation Prediction and Visual Attention. In this work, we focus

on predicting the landing position for a single saccade. A signi�cant

body of research investigates the saccade planning problem based

on the image content and user’s task [Kowler 2011], where an at-

tempt at predicting the saccade sequence is made based on visual

attention and “saliency map” modeling [Borji and Itti 2013; Katti

et al. 2014]. This is a far more complex problem which also involves

cognitive and application-dependent aspects, but in principle, the

saliency consideration along the saccade trajectory and in the prox-

imity of the predicted landing position could contribute towards an

improvement of the prediction accuracy by e�ectively “snapping”

the �xation to the locally most salient feature. We relegate this

promising research avenue to future work.

6 CONCLUSION

Gaze-contingent methods promise an improvement in user experi-

ence while exploring and interacting with digital content. To provide

superior quality, the image updates have to be performed on time

according to the current viewer’s gaze direction, as any delays may

lead to dissatisfaction. In this work, we presented an end-to-end

system that uses a saccade landing prediction to combat system

latency. The main idea is to take advantage of saccadic suppression

and update the image to the new �xation location as soon as the

saccade starts. E�ectively, such an approach provides an update to

the new �xation location before the saccade ends, which leads to

less visible delays. To this end, we propose a measurement-driven

saccade model that can predict the landing position before the next

�xation is established. Our prediction provides better accuracy than

existing techniques. Also, an important feature is the continuous pre-

diction re�nement as new eye-tracking samples arrive. We applied

the model in a simple foveated rendering system and demonstrated

signi�cant improvements compared to a system without prediction.

A great advantage of our technique is that it comes at almost no ad-

ditional cost and can be integrated into any existing gaze-contingent

system in a straightforward manner. To our knowledge, this is the

�rst work that presents and evaluates a real-time gaze-contingent

system with the prediction of saccade landing position.
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