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Abstract
Obtaining a high quality high dynamic range (HDR) image in the presence of camera and object movement has
been a long-standing challenge. Many methods, known as HDR deghosting algorithms, have been developed
over the past ten years to undertake this challenge. Each of these algorithms approaches the deghosting problem
from a different perspective, providing solutions with different degrees of complexity, solutions that range from
rudimentary heuristics to advanced computer vision techniques. The proposed solutions generally differ in two
ways: (1) how to detect ghost regions and (2) what to do to eliminate ghosts. Some algorithms choose to completely
discard moving objects giving rise to HDR images which only contain the static regions. Some other algorithms
try to find the best image to use for each dynamic region. Yet others try to register moving objects from different
images in the spirit of maximizing dynamic range in dynamic regions. Furthermore, each algorithm may introduce
different types of artifacts as they aim to eliminate ghosts. These artifacts may come in the form of noise, broken
objects, under- and over-exposed regions, and residual ghosting. Given the high volume of studies conducted in
this field over the recent years, a comprehensive survey of the state of the art is required. Thus, the first goal of this
paper is to provide this survey. Secondly, the large number of algorithms brings about the need to classify them.
Thus the second goal of this paper is to propose a taxonomy of deghosting algorithms which can be used to group
existing and future algorithms into meaningful classes. Thirdly, the existence of a large number of algorithms
brings about the need to evaluate their effectiveness, as each new algorithm claims to outperform its precedents.
Therefore, the last goal of this paper is to share the results of a subjective experiment which aims to evaluate
various state-of-the-art deghosting algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Motion

1. Introduction

The real world encompasses a wide range of luminance val-
ues that exceeds the capabilities of most image capture de-
vices. However, in general it is desirable to capture, store,
process, and display this wide range of luminance values.
The field of HDR imaging is primarily developed to address
this problem, that is to bridge the gap between what is avail-
able in the real-world in terms of light levels and what we
can do to represent it using digital equipment [RWPD10].

The first stage of the HDR imaging pipeline is acquisition.
There have been many studies in HDR image and video ac-
quisition, which can be grouped under three categories. The
first category consists of the methods that use specialized
hardware to directly capture HDR data. The second category

consists of the techniques based on reconstructing an HDR
image from a set of low dynamic range (LDR) images of the
scene with different exposure settings, techniques that are
collectively called as multiple exposure methods. The third
category consists of the techniques which aim to expand the
dynamic range of a normally LDR image – be it through
pseudo-multi-exposure or inverse tone mapping [BADC11].

In general, the techniques in the first and third categories
produce inherently ghost-free HDR images as they operate
on data captured at a single time instance. The techniques
in the second category, however, must deal with moving ob-
jects as the image capture process takes a longer time due to
necessity of capturing multiple exposures. This is due to the
fact that the ensuing HDR image reconstruction process sim-
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(a) A moving light source with
high noise

(b) Non-deformable body motion
with large displacements

(c) Deformable body motion (d) Deformable body motion with
occlusions

Figure 1: Different types of ghost artifacts.

Table 1: Notation used in this survey

L1,L2, ...,LN Input LDR images
Lre f Reference LDR image

Ln(p) Pixel intensity at position (p) in image Ln
H Output HDR image

f (·) Camera Response Function
gnm(·) Intensity Mapping or Color Transfer

Function from exposure n to m
∆tn Exposure time of the input image Ln

α(Ln(p)) Weight of pixel Ln(p)
E1,E2, ...,EN Input LDR image in the

radiance domain (Eq. 2)

ply computes a weighted average of all exposures, resulting
in different objects being blended together in case of object
movement. The artifacts that occur as a result of such blend-
ing are collectively termed as ghosts or ghosting artifacts
(see Figure 1).

We can formalize this notion as follows (see Table 1 for
the terminology used in this survey). Let L(p) represent an
LDR image pixel p which is obtained when the correspond-
ing sensor location is exposed to an irradiance E(p) for ∆t
units of time (see Table 1):

L(p) = f (E(p) ·∆t), (1)

where f represents the camera response function (CRF)
which depends on several factors such as the white balance
and gamma correction setting, analog-to-digital conversion
parameters, physical characteristics of the sensor, camera
manufacturer preferences, etc. If the function f is known,
it is possible to recover the correct sensor irradiance from
the image pixel intensity using the following relation:

E(p) =
f−1(L(p))

∆t
. (2)

Most of the time, f is not known but can be recovered us-
ing various techniques [BK93,MP94,DM97,RBS99,MN99,
GN03,OAG13]. Alternatively, the images can be captured in
RAW formats which are typically linear (thus f (x) = mx for
an easily recoverable slope value, m).

Once f is recovered, the HDR value H(p) can be com-
puted as:

H(p) =

N
∑

n=1
α(Ln(p)) f−1(Ln(p))

∆tn

N
∑

n=1
α(Ln(p))

, (3)

where α is a weighting function which depends on the pixel
intensity level. Although one can use a simple triangular
weighting function that gives high weights to the center of
the intensity range while penalizing the extremes as pro-
posed by Debevec and Malik [DM97], recent research has
shown that other parameters such as the camera noise must
be taken into account to determine an optimal weighting
function [GAW∗10].

The critical assumption of Equation 3 is that all input im-
ages L1, ...,LN measure the same scene radiance value for
each pixel position p:

f−1(Ln(p))
∆tn

=
f−1(Lm(p))

∆tm
∀n,m, p. (4)

If this assumption, known as reciprocity, does not hold, H(p)
will be equal to the weighted sum of different sensor irra-
diance values, resulting in semi-transparent object appear-
ances known as ghosts. The reciprocity assumption may
break down for saturated pixels – a problem that is to be
dealt with by using a good α function.

The requirement of a pixel measuring the same irradiance
in all input exposures necessitates that the camera and the
scene remain static throughout the capture process. Because
this requirement would severely limit the range of scenes
that can be captured using the multiple exposures technique,
various solutions have been proposed for dealing with both
camera and object movement. It should noted however that,
of these two problems, the object movement is much more
severe as the former can be avoided by using a tripod or
registering the individual exposures prior to HDR image re-
construction. Although this survey discusses both types of
methods, the emphasis is especially placed on deghosting
algorithms that deal with dynamic objects.
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2. Related Work

Despite the large number of HDR deghosting methods that
have been proposed, there exists only a few studies that aim
to survey, classify, and compare them. In this section, we
briefly review these studies.

Srikantha and Sidibé [SS12] provided the first survey and
classification of HDR deghosting methods. In their study,
they classified 17 algorithms according to how they detect
motion regions and remove ghosts. In addition, the ghost
detection accuracy is evaluated quantitatively in terms of
sensitivity and specificity by comparing the ghost detection
bitmaps with the ground truth. Although this study is impor-
tant as being the first review of deghosting methods, it does
not cover a large number of methods and is now outdated
since it misses the surge of activity that took place in the
field after 2011.

Karaduzovic-Hadziabdic et al. [KHTM13] proposed a
methodology for evaluating deghosting algorithms and com-
pared the methods of Sen et al. [SKY∗12] and Zimmer
et al. [ZBW11] together with two commercial products,
namely Photomatix and Photoshop, in a psychophysical ex-
periment with 30 subjects and 9 scenes. It was found that Sen
et al.’s algorithm has the fewest artifacts. In their more recent
work [HTM14], the authors extended their comparison to in-
clude the algorithm of Hu et al. [HGPS13] and performed an
expert evaluation.

In another study, Tursun et al. [TAEE14] compared the
methods of Sen et al. and Hu et al. on a new dataset us-
ing both subjective and objective metrics. The selected ob-
jective metric was Liu et al.’s [LWC∗13] no-reference met-
ric for evaluating the quality of motion deblurring. The au-
thors hypothesized that due to the similarity of deblurring
and deghosting artifacts, the metric proposed for the former
may be employed for the latter. However, the authors did not
correlate the subjective and objective results.

The primary goal of the current study is to conduct a much
more extensive and up-to-date survey and classification of
the state of the art in the field of HDR deghosting. To this
end, this survey includes approximately 50 HDR deghost-
ing methods grouped into a taxonomy based on the ap-
proaches they follow. Secondly, due to the increasing num-
ber of deghosting algorithms that are being proposed each
year, there is a growing need to evaluate these methods
systematically. To this end, there is a need to have a re-
liable benchmark dataset for HDR image deghosting as it
exists in other fields of computer vision such as optical-
flow [BSL∗11], image retrieval [SB05], and image retar-
geting [RGSS10]. Thus, the second goal of this paper is to
present a new benchmark dataset and the results of a sub-
jective experiment aimed to compare several deghosting al-
gorithms. Finally, this paper makes a brief investigation of
whether two somewhat relevant quantitative metrics can be
used to objectively evaluate deghosting quality. In summary,
the current work makes the following contributions:

• A taxonomy and review of a much more extensive set of
deghosting studies available in the recent literature,

• A new benchmark dataset which can be used to test HDR
image deghosting methods,

• A subjective evaluation framework for evaluating future
deghosting algorithms,

• Comparison of 6 (relatively recently proposed) deghost-
ing algorithms both in a subjective experiment and using
two quantitative metrics.

The rest of this paper is organized as follows. In Section 3
we give a taxonomy of existing HDR deghosting methods
and analyze the advantages and weaknesses of each class of
algorithms. In Section 4, we first introduce the benchmark
dataset and then provide the details of our experimental de-
sign and data analysis. In Section 5, we present the results
of the experiment and interpret the obtained rankings based
on the algorithms’ outputs. We also discuss the correlation
of two quantitative metrics with the experimental results. In
Section 6, we conclude the paper with a summary of the find-
ings and a discussion of future research directions.

3. Taxonomy of HDR Deghosting Methods

In order to organize and highlight the similarities and dif-
ferences between existing deghosting algorithms, here we
present a taxonomy of approximately 50 methods based on
how they approach the deghosting problem.

Global exposure registration methods aim to align indi-
vidual exposures globally.

Moving object removal methods aim to remove the mo-
tion by estimating a static background.

Moving object selection methods detect the inconsisten-
cies in the input pixel intensities which are affected by
motion and remove the ghosting artifacts by either locally
using a single source image or combining a set of multiple
sources which are consistent.

Moving object registration methods focus on recovering
or reconstructing the ghost pixels by searching for the best
matching region in other exposures or in the affected im-
age. The matching regions are used to transfer informa-
tion to the problematic region. These algorithms may find
pixel or patch based dense correspondences.

Video deghosting methods are tailored to remove the po-
tential ghosting artifacts in HDR videos. In this regard,
they make use of the temporal information of videos dur-
ing processing.

The detailed taxonomy is given in Figure 2 with accom-
panying references. It should be noted that although this tax-
onomy is valid for most cases, there exist some hybrid ap-
proaches which are difficult to classify as belonging to a sin-
gle class. Such algorithms are classified based on their most
dominant characteristics.
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HDR Motion Compensation Methods

Global Exposure
Registration

Moving Object
Removal

Moving Object
Selection

Moving Object
Registration

Video Deghosting

Single Source Multi Source Optical-flow
based

Patch based
[MMF02]
[Can03]
[War03]
[CH06]

[EUS06]
[GG07]
[TM07]

[RMVS07]
[ILP11]
[Aky11]
[Yao11]

[KAR06]
[PH08]

[GSL08]
[SPS∗09]

[SL12]-PWD
[ZC10]
[ZC12a]

[KHC∗06]
[Gro06]
[JLW08]
[LC09]

[RWPD10]
[PK10]

[LPC11]
[SL12]-FM

[GGC∗09] [MPC11]
[MPC09] [MTCL12]
[RKC09] [SSM12]

[RC10] [ZC12b]
[LRZ∗10] [OLK13]

[WXRL10] [SPLC13]
[HLL∗10] [GKTT13]

[ALKC11] [WT13]
[RC11] [LLM14]

[Bog00]
[HG11]

[ZBW11]
[FBPC12]

[JO12]
[HDW14]

[MG07]
[POK∗11]
[ZLZR11]
[OMLV12]
[HGP12]

[SKY∗12]
[HGPS13]
[ZLZ∗12]
[ZLZ∗13]

[KUWS03]
[ST04]
[MG10]

[CCCV11]
[CCV11]
[KSB∗13]

Figure 2: Taxonomy of HDR motion compensation methods

3.1. Global Exposure Registration

Although there are a few exceptions, almost all ghost re-
moval methods assume that the input exposures are pre-
registered either by capturing images by using a static cam-
era or by using one of the methods discussed here. The ob-
jective of global registration algorithms is to compensate for
the effects of the camera motion by estimating the parame-
ters of transformations which will be applied to each one of
the input images. These methods do not focus on the object
displacements or assume that the scene is static. The types
of the transformations and the methods of parameter esti-
mation are the discriminative properties of the algorithms in
this class.

In their early work, Mann et al. [MMF02] use global ho-
mography to align differently exposed frames of a panning
video with unknown relative exposure settings to produce an
image mosaic. They propose three methods based on com-
parametric equations for the simultaneous estimation of the
CRF and image registration. Each frame is modeled as a
function of quantity of light falling on the sensor where the
functions are in the form of projective coordinate transfor-
mations with unknown parameters. The first method is based
on minimizing the sum of squared errors between the irradi-
ance values with smoothness and monotonicity constraints
on the CRF. The second method estimates the CRF as a two-
parameter closed-form function. While being simple, this
method provides a fit with lower accuracy. The third method
applies spline interpolation to the data points produced by a
procedure called “log-unrolling”. The output image obtained
using these methods is as good as input images where there
is no overlap between the images. In the regions where there
is overlap, the output image is better than the individual in-
put images since it combines the additional information from
multiple images.

Candocia [Can03] introduces another method based on
comparametric equations similar to Mann et al.’s method

[MMF02], where spatial and tonal registration of the input
images are performed simultaneously. The parameters min-
imizing the variance of the pixel values at all spatial image
coordinates are found using the Levenberg-Marquardt algo-
rithm. Since this optimization is nonlinear with multiple lo-
cal minima, the initial parameter set is initialized by pair-
wise registering the input images using pyramidal decom-
position of the images. While being successful at correcting
registration errors, the author states that the method may suf-
fer from increasing running times due to the computation of
the Hessian matrix at each iteration of the optimization.

Ward [War03] presents a fast translational registration of
different exposures by aligning bitmaps obtained from the
input images. A Median Threshold Bitmap (MTB) Mi of im-
age Li is defined as:

Mi(p) =

{
1, if Li(p)< µi

0,otherwise
(5)

where µi is the median value of the pixel intensities in im-
age Li. Ward’s approach is based on the observation that Mi
is robust to the changes in the exposure settings, due to the
monotonicity property of camera response functions. In the
study, each Mi, M j pair is aligned using a multi-scale pyra-
mid structure, starting from the lowest resolution. Later, the
translations found using the pyramid are applied to the in-
put images to obtain a co-registered set of input images. The
method of Ward does not require the CRF estimation and the
computational cost is very low since it is possible to process
multiple bits of the bitmaps in one clock cycle of the CPU.

Cerman and Hlaváč [CH06] introduce an HDRI method
to estimate the unknown exposure time from a set of RAW
images. As a part of their work, they present a method to
register the input images in order to eliminate the camera
motion present in the hand-held acquisition settings. Prior to
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the image registration, the input exposures are normalized
using the estimated CRF. Later, the amount of image shift
is estimated using the correlation in the Fourier domain. The
scope of this initial estimation is limited to translational cam-
era motion only. The estimates are used to initialize the local
optimization of the sum of squared differences between the
input images. The optimization phase includes both trans-
lational and rotational motion in subpixel accuracy. Instead
of choosing a reference image, the registration is applied on
consecutive image pairs.

Eden et al. [EUS06] present a method for the mosaic-
ing of images with large exposure difference and scene mo-
tion to create an HDR panorama. As the first step, the input
images are aligned using feature-based registration method
of Brown and Lowe [BL03]. Next, the input images are
mapped to the radiance domain. In this procedure, a pre-
calibrated camera with a known CRF is used. The output
panorama is constructed in two phases. In the first phase,
a reference panorama is constructed based on Agarwala et
al. [ADA∗04]. Although the created reference panorama
covers the full angular extent with smooth transitions be-
tween the input images, it does not use the full dynamic
range. In the second phase, the full dynamic range is intro-
duced to the reference panorama using a max-flow graph cut
which encourages large SNR while preserving the smooth
transitions between the images. Since each pixel of the out-
put is constructed using only one of the input images, poten-
tial ghosting artifacts are eliminated.

Gevrekci and Gunturk [GG07] propose a novel contrast-
invariant feature transform (CIFT) algorithm which does not
require a photometric registration as a preprocessing step
of the spatial registration. Based on the assumption that the
Fourier components are in phase at the corners, the algorithm
detects the corners by applying a local contrast stretching op-
eration to each pixel of an input image and using the Phase
Congruency (PC) function [Kov99]. Next, the input images
are spatially registered by feature matching using RANSAC.

Tomaszewska and Mantiuk [TM07] aim to correct mis-
alignments due to the camera motion by estimating a gen-
eral planar homography using SIFT [Low04] features and
RANSAC [FB81]. First, the proposed algorithm extracts
SIFT keypoints in the input images. Second, the correspon-
dences between the keypoints are established and the num-
ber of correspondences is decreased to four pairs using the
RANSAC algorithm. The RANSAC algorithm selects the
keypoints which are compatible with a homography and
which are present in all of the input images. Since the trans-
formation provided by the homography has subpixel ac-
curacy, the output pixel values are calculated using bilin-
ear interpolation. In addition, the keypoint search procedure
is performed in the contrast domain to provide robustness
against the changes in the exposure and using a multi-scale
difference-of-Gaussian pyramid to improve the keypoint de-
tection. In order to increase the accuracy of the registration

process, SIFT algorithm is modified to choose an automatic
threshold value instead of a fixed one.

Rad et al. [RMVS07] start with estimating the CRF, f ,
based on Debevec et al. [DM97]. Then f−1 is applied to
the input images to transfer the images to the radiance do-
main. Alignment of the input images is performed in the
frequency domain, using Fourier transform and ignoring the
pixels closer to the limits of the pixel intensity range. Dif-
ferent from Cerman and Hlaváč [CH06], this method es-
timates both the translation and the rotation parameters in
the frequency domain only. Later, these parameters are used
to create a super-resolution HDR image by interpolating in
a higher-resolution image grid in the HDR reconstruction
phase.

Im et al. [IJLP11] propose an algorithm based on the elas-
tic registration (ER) method of Periaswamy et al. [PF03].
In their study, Im et al. model the motion between the con-
secutive image pairs using affine transformations. The trans-
formation parameters are estimated by minimizing the sum
of squared differences between the pixel intensities of trans-
formed image pairs. Their other work [ILP11] propose an
improvement to the ER by selecting the best target image
for the registration. The target image is selected by averag-
ing the hue channel of the input images. Later, the image
which has the smallest mean of squared error with this av-
erage hue map is chosen as the target image. This operation
improves the estimation accuracy of the ER by avoiding the
selection of over- and under-exposed images as targets.

Akyüz [Aky11] eliminates the misregistrations due to the
translational camera motion only. The proposed approach is
based on the observation that unless they are not under- or
over-exposed, the relation between the intensities of neigh-
boring pixels in a set of aligned images (e.g. a pixel having
smaller intensity than its bottom neighbor and larger inten-
sity than its right neighbor) should be insensitive the expo-
sure changes. In other words, pixel order relations should be
preserved. For each input image, a correlation map is created
which maps such relations to ordinal values. Later, input im-
ages are aligned pairwise by minimizing the Hamming dis-
tance between the correlation maps of the input images. Ro-
tation and other more complex camera motion patterns are
not addressed by this method.

Yao [Yao11] provides another method based on the use of
phase congruency (PC) images. Different from Gevrekci and
Gunturk [GG07], the proposed method registers PC images
in the frequency domain using the phase cross-correlation
technique, rather than using them to identify the keypoints
for a registration in the spatial domain. In addition to the
translational registration, the rotational registration is also
performed using log-polar coordinates, in which rotational
motions are represented with translational transformations
in the coordinates. In order to detect the subpixel shifts, evo-
lutionary programming is used to find the optimal transfor-
mation parameters.
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3.2. Moving Object Removal

The main objective of the algorithms in this class is to re-
move all of the moving objects in the scene by estimating
the static background. One important assumption of the most
of these algorithms is that for each pixel, the majority of
the input exposures capture the static part of the scene. Due
to this assumption, insufficient number of input exposures,
dynamic backgrounds, and deformable-body motions with
overlapping regions between exposures have a negative ef-
fect on the deghosting quality for this class of approaches.

Khan et al. [KAR06] propose an iterative method for
the removal of moving objects in the output HDR image.
The method is based on the calculation of the probability
P(En(p)|F) that a pixel En(p) belongs to the background
class F . The authors use the kernel density estimator:

P(En(p)|F) =
j

∑
i=1

wi ·KH(En(p)−yi)
/ j

∑
i=1

wi, (6)

where j is the number of pixel neighbors and KH is the multi-
variate kernel function:

KH(x) = |H|−
1
2 (2π)−

d
2 exp(−1

2
xT H−1x), (7)

where H is the bandwidth matrix. In the calculation of Equa-
tion 6, yi belongs to 3×3 neighborhood of the pixel p in all
exposures. w is initially set to a hat function then both wp
and P(En(p)|F) are updated iteratively until convergence:

wp,t+1 = wp,0 ·wp,t , (8)

where t is the iteration number. At the end of each iteration,
wp,t takes the new value of P(En(p)|F). After the conver-
gence, the probabilities P(En(p)|F) are used instead of the
weighting function α in Equation 3 to construct the HDR
image.

Pedone and Heikkilä [PH08] improve the method of Khan
et al. [KAR06] by estimating the parameters of the band-
width matrix H. Instead of setting it to the identity matrix,
the i-th diagonal entry of H is calculated as:

h̃i = n−
1

d+4 σ̃i, (9)

where σ̃ is the weighted standard deviation of the ith di-
mension. In addition, due to similarity of some objects with
the background, the authors state that using Khan et al.’s al-
gorithm [KAR06], it is possible to observe ghosting in the
output. To improve the deghosting quality, they propose to
apply morphological operations to the bitmaps obtained by
thresholding the weight maps before merging the exposures.

Granados et al. [GSL08] provide an energy-minimization
based background estimation method whose application to
HDRI is also given. For each pixel p, the proposed method
assigns the source image a label Lp ∈ {1, ...,N} which min-

imizes:

E(L) =∑
p

Dp(Lp)+ ∑
(p,q)∈N

Vp,q(Lp,Lq)

+ ∑
(p,q)∈N

Hp,q(Lp,Lq),
(10)

where Dp(Lp) is the data term, Vp,q(Lp,Lq) is the smooth-
ness term, and Hp,q(Lp,Lq) is the hard constraint. The
data term measures how well p satisfies the estimated
density function and the approximated motion boundaries.
The smoothness term Vp,q(Lp,Lq) penalizes intensity dif-
ferences. The hard constraint Hp,q(Lp,Lq) prevents half-
included objects by allowing only previously observed la-
beling transitions. The energy function in Equation 10 is
minimized via graph cuts [BVZ01]. Resulting labeling de-
termines the input source image for each pixel in HDR con-
struction.

Sidibe et al. [SPS∗09] detect ghost regions using the pixel
order relation. If a pixel does not contain scene motion then
the pixel intensity values must follow the same order as the
exposure times, i.e. if ∆ti > ∆t j, then Li(p) ≥ L j(p). For
each pixel in the ghost-regions, the LDR images are put
into two sets D and S. S contains the exposures with no
motion for current pixel and D contains the exposures with
motion for the current pixel. Quasi Continuous Histograms
(QCH) [CS07] are used to separate the input images into
these two sets. The main approach of QCH is to calculate
the mode of the pixel intensity values and use this informa-
tion to identify the pixels with motion. During HDR image
construction phase, only the images in the set S are used.

Silk and Lang [SL12] introduce a method which employs
two different strategies depending on the type of the mo-
tion. The algorithm starts with performing a change detec-
tion which consists of applying a fixed threshold on the ab-
solute difference of irradiance values in each color channel.
This initial motion mask does not respect the object bound-
aries. In order to refine the initial mask according to the
object boundaries, the images are first over-segmented us-
ing SLIC superpixels [ASS∗10] and then the superpixels are
categorized into motion and non-motion regions according
to the number of inconsistent pixels marked by the initial
change detection. The super-pixels with motion are assigned
smaller weights in the HDR reconstruction. This operation is
called pairwise down-weighting (PWD). The algorithm has
a second type of output in the presence of fluid motion (FM),
which is described in Section 3.3.1.

Zhang and Cham [ZC10,ZC12a] propose an exposure fu-
sion algorithm of static and dynamic scenes, where the pixel
weights are determined using gradient-domain based quality
measures instead of absolute pixel intensities. The per-pixel
weight map of each image is calculated as a multiplication of
visibility and consistency scores. The visibility score assigns
larger weights to the pixels with larger gradient magnitudes.
On the other hand, consistency score assigns larger weight
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to a pixel if its gradient direction is consistent with the col-
located pixels in other exposures.

3.3. Moving Object Selection

The algorithms that fall into this class are characterized by
the approaches they employ to detect the presence of mo-
tion, e.g. variance-based, pixel-value prediction, threshold-
ing, pixel-order relation, etc. Different from the moving ob-
ject registration methods, the moving object selection does
not compute correspondences among the input LDR images
to recover the pixel intensities using all exposures while
compensating for motion. Instead, they select one (single
source) or multiple (multi source) input images for each dy-
namic region. Hence, while computationally efficient, mov-
ing object selection algorithms, in particular single source
ones, have a drawback that the resulting image may not be
HDR in dynamic regions.

The major difference of the moving object selection meth-
ods from the moving object removal methods is that the for-
mer select one or more source images for the regions af-
fected by motion. As a result, the output HDR contains the
moving objects which appear in the selected input image(s).
On the contrary, moving object removal methods do not se-
lect a particular reference image. They perform a consis-
tency check for each pixel across exposures. This results in
complete removal of dynamic objects if they do not stay sta-
tionary in the majority of the input exposures.

3.3.1. Single Source

Single source methods use a single input image for each dy-
namic region. Some simpler methods use the same input im-
age for all dynamic regions whereas more sophisticated ones
may choose a different input image for different dynamic re-
gions based on a well-exposedness criteria.

Kao et al. [KHC∗06] works on two RAW LDR images
with ±2 EV difference. First, a block-based global align-
ment is performed which removes the effects of camera mo-
tion. Due to the ±2 EV difference the following relation be-
tween the pixel intensity value of two input images L1 and
L2 is expected:

L2(p)/L1(p) = 4, ∆t2 = 4∆t1. (11)

If a pixel is not consistent with this relation (excluding sat-
urated pixels), it is marked as a potential ghost. Next, the
exposure normalized version of the low exposure image is
calculated as L̃1(p) = 4 ·L1(p), and the output HDR image
H is then obtained by fusing the input images as follows:

H(p) =

{
L̃1(p), if p is marked or L2(p) is ill-exposed
L2(p), otherwise.

(12)
Grosch [Gro06] provides an extension to Median Threshold
Bitmaps (MTB) [War03] by including rotational alignment

where MTB alignment is performed on the graphics hard-
ware to accelerate the computations. This first stage of uti-
lizing the MTBs prevents the potential artifacts caused by the
camera movement. The next step includes a CRF estimation
which is based on the histogram-based method of Grossberg
and Nayar [GN03] and used to predict pixel intensity values
of each image in consecutive image pairs Li and L j. A pixel
p is marked as ghost if the following relation does not hold:∣∣∣∣ f (∆t j

∆ti
f−1(Li(p))

)
−L j(p)

∣∣∣∣< ε (13)

The pixels of the ghost regions are not used in the HDR im-
age construction. In order to minimize the loss in the dy-
namic range and noise, the pixel intensities in these regions
are predicted using the estimated CRF and the intensities of
the co-located pixels from the source image with the lowest
number of poorly-exposed pixels in the motion region.

The algorithm of Jacobs et al. [JLW08] consists of two
steps. First, similar to [Gro06], a global image alignment is
performed based using MTBs [War03]. Next, the ghosting
artifacts caused by moving objects are eliminated by making
use of the so-called variance images (VI) and local-entropy
based uncertainty images (UI). The VI is created by calcu-
lating the per-pixel intensity variance over all exposures in
the radiance domain, excluding the saturated exposures. To
have better region boundaries, the VI is thresholded with
a fixed value and morphological operations are applied to
the resulting bitmap. Since the calculation of the VI is per-
formed in the radiance domain, inaccurate CRF estimation
may result in unreliable variance values. Therefore, the au-
thors use the uncertainty images (UI) as a supplementary
movement detection source since the UI does not require the
CRF. The use of UI is based on the assumption that local
contrast sources such as edges correspond to object bound-
aries and the entropy around these regions should be similar
if the region is not affected by the scene motion. The final UI
is created by taking a weighted difference of UI correspond-
ing to each input image, and then by applying thresholding
and morphological operations to obtain motion region clus-
ters. In the HDRI generation phase, the source image used in
the movement regions is chosen as the input image with the
least amount of saturation and the longest exposure time.

Lin and Chang [LC09] propose a method to eliminate
ghosting artifacts caused by stereo mismatches in stereo-
scopic HDR. The input is a pair of images captured with dif-
ferent exposure time settings using two cameras. The dispar-
ity map between the input images are found using the SIFT
matching scheme after normalizing input images with the
estimated CRF. If the absolute difference between the corre-
sponding pixels of the normalized images are larger than a
threshold in a region, it is identified as a ghost region caused
by a stereo mismatch.

Reinhard et al. [RWPD10] calculate the weighted vari-
ance at each pixel location and selects the regions where the
variance is above a threshold as a motion region. The method
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works well when the moving object is significantly different
from the background in terms of the contrast and color sim-
ilarity.

Pece and Kautz [PK10] propose a motion-region detec-
tion approach called Bitmap Movement Detection (BMD)
which is also based on MTBs [War03]. They start by ex-
tracting MTB Mi of each input exposure Li. Then any pixel
p, for which the following is true, is marked in the motion
map:

N

∑
i=1

Mi(p) /∈ {0,N} (14)

To remove the effects of the noise, the obtained motion map
is refined using morphological operations such as erosion
and dilation. The pixels in the motion map are clustered ac-
cording to their connectivity using the connected component
labeling algorithm of Haralick and Shapiro [SH92], and fi-
nally, the detected motion regions are filled from the best-
exposed input image for each individual motion region.

Lee et al. [LPC11] propose a histogram-based deghosting
method which improves the studies of Min et al. [MPC09,
MPC11] by detecting ghost regions as a difference in the
ranks of pixels according to their intensities. In order to be
able to scale the computational load, the pixel ranks are nor-
malized to B bits using:

r̃n(p) = round

(
rn(p)−1

Rn−1
×2B

)
, 0≤ r̃n(p)≤ 2B−1,

(15)
where rn(p) is the rank of the pixel p in Ln and r̃n(p) is the
normalized rank. Larger B gives smaller quantization error
with higher computational load. If the absolute difference
of normalized ranks between an image Ln and Lre f is larger
than a user-defined threshold, the pixel is marked in a motion
map. The rank-based motion maps are combined with the
weighting function of Mertens et al. [MKVR07] so that only
Lre f is used to produce output pixels in motion regions.

The algorithm of Silk and Lang [SL12] was introduced
in Section 3.2 with its pairwise down-weighting (PWD) ap-
proach which is applicable when the minority of the input
image stack is affected by the motion. However, in the pres-
ence of foliage, flags and fluids, some super-pixels may con-
tain motion in each one of the input images. This motion
type is called fluid motion (FM) and is not resolved correctly
by the PWD. For such cases, the algorithm offers a second
output which uses only the best exposure maximizing the
sum of pixel weights in the region affected by the motion.

3.3.2. Multi Source

Multi source methods try to maximize dynamic range by us-
ing as many exposures as possible for each dynamic region.
That is, different from single source, the input exposures
which are consistent with a selected reference exposure con-
tribute to the HDR image.

Gallo et al. [GGC∗09] start by determining the reference
image Lre f , which is selected either by the user or by min-
imizing the number of saturated pixels. Next, the ghost re-
gions are found based on the reciprocity assumption:

ln(Ln(i, j)) = ln(Lm(i, j))+ ln(emn), (16)

where emn is the relative exposure between Lm and Ln. This
assumption states that there should be a linear relation if two
pixels measure the same irradiance level. Any pixel violat-
ing this linear relation is considered as an inconsistent pixel
containing scene motion. In order to increase the robustness,
the method operates on rectangular image patches instead of
the pixels. The inconsistent patches do not contribute to the
HDR construction process. In order to avoid the artifacts be-
tween the patch boundaries, the HDR construction operation
is performed in the image gradients domain [FLW02].

Min et al. [MPC09] extract multi-level threshold maps
from each one of the input LDR images. A multi-level
threshold map is a segmentation of the image into multiple
regions according to the pixel intensity values where each
region has the same number of pixels. Any difference be-
tween the threshold maps of input images and Lre f , which is
selected as the mid-exposure is marked as a motion-region,
and the pixels in the motion-regions are assigned smaller
weights during HDR construction. While the proposed ap-
proach is simple and very fast, the presence of texture-less
surfaces and the differences in the threshold maps due to
other factors such as noise may result in false detections.

Raman et al. [RKC09] assumes that the first 5-10 hori-
zontal lines of {L1, ...,LN} do not contain motion, since mo-
tion is usually present in the ground plane of the scenes.
These static regions are used to estimate the intensity map-
ping function (IMF). Similar to Gallo et al. [GGC∗09], this
approach checks the inconsistency between the input images
and Lre f using rectangular patches. If a large number of pix-
els in a patch does not follow the IMF, the patch is marked
as motion region in the source image and ignored in the ex-
posure fusion operation [MKVR07].

Raman and Chaudhuri [RC10] improve the simple heuris-
tic of Raman et al. [RKC09] by using a weighted variance
measure based on Reinhard et al. [RWPD10] and Jacobs
et al. [JLW08] to identify the static regions. The detected
motion-free regions are used to estimate the IMF by fitting a
polynomial curve with a degree of 4 to the observed pixel in-
tensities in each pair of images. Then, each one of the input
LDR images are over-segmented into super-pixels. A super-
pixel is classified as a motion-region if the number pixels
which do not follow the estimated IMF is above a certain
level. The neighbor super-pixels with motion are merged and
these regions are ignored, while the remaining static patches
are merged using the exposure fusion technique of Mertens
et al. [MKVR07].

Li et al. [LRZ∗10] use a bidirectional pixel similarity
measure between each LDR image and Lre f to identify the

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



O. T. Tursun, A. O. Akyüz, A. Erdem & E. Erdem / The State of the Art in HDR Deghosting: A Survey and Evaluation

regions affected by motion. For a particular pixel, if the pixel
intensity measured in Lre f is more reliable (with an inten-
sity value closer to 128), then the similarity is calculated by
mapping the intensity of input image to Lre f using the IMF.
Otherwise, it is calculated by mapping the intensity value of
Lre f to the input image exposure. An adaptive threshold is
applied to the similarity map in order to detect movement
regions, which is a function of ∆t and pixel intensities. The
regions with motion are filled using the assumption that if
for two pixels Lre f (p) = Lre f (q), then for any source image
Ln(p) = Ln(q) must be satisfied.

Wu et al. [WXRL10] introduce a non-iterative ghost-
free HDR imaging method without manual threshold tun-
ing, which consists of alignment, movement detection, CRF
estimation, and progressive image correction steps. The re-
gions where the direction of the RGB vector remains fixed
with respect to the exposure change are assumed to be free
of motion and used for the CRF estimation. Later, this initial
movement detection is refined using the pixel order relation:

∆ti > ∆t j =⇒ Li(p)≥ L j(p), (17)

and the pixel error criterion, which is given by Equation 13
in Grosch [Gro06]. The refined movement detection mask
is obtained by merging the binary movement masks of the
color error criterion, pixel order relation, and the pixel error
criterion. Then a progressive image correction is applied by
starting from the reference exposure Ln and filling the mo-
tion regions with the predicted pixel values in the exposures
Ln−1 and Ln+1. The image correction is performed progres-
sively for other exposures until all the input images are cor-
rected. Formation of artifacts around object boundaries is
prevented using the image inpainting technique of Olivera
et al. [RC01].

Heo et al. [HLL∗10] detect motion-regions using joint
probability density functions (PDF) of pixel intensities from
different exposures. After Lre f is selected, the global align-
ment of input images is performed to eliminate the effects of
the camera motion. Next, the joint PDFs are estimated by ap-
plying Parzen windowing [Par62, R∗56] to joint histograms
between each pair:

{〈Lre f ,Ln〉|Ln ∈ {L1, ...,LN}−{Lre f }}. (18)

For each one of the nonreference images, a ghost bitmap is
calculated by thresholding the joint PDF. Since the initial
motion detection is noisy, it is refined with an energy min-
imization approach using graph cuts [BVZ01]. In the next
phase, the CRF is estimated using the pixels in the static re-
gions. The HDR reconstruction weights α(Ln(p)) are based
on bilateral filtering weights [TM98] and they are a function
of pixel exposure, geometric distance and the color differ-
ence between Ln(p) and Lre f (p).

An et al. [ALKC11] propose another LDR exposure-
fusion algorithm. Different from Raman et al. [RKC09] and

Raman and Chaudhuri [RC10], the motion detection opera-
tion is embedded into the exposure fusion equation with the
following weighting formula:

α(Ln(p)) =Wn(p) ·Zn(p) ·On(p), (19)

where Wn(p) is the weighting term used by Mertens et al.
[MKVR07] which depends on contrast, saturation, and well-
exposedness, Zn(p) is the zero-mean normalized cross cor-
relation (ZNCC) factor between Ln and a previously selected
Lre f , On(p) is a binary map which is zero if Ln(p)< Lm(p)
when ∆tn > ∆tm.

In their more recent work, Raman and Chaudhuri [RC11]
propose some improvements to their previous study [RC10]
by replacing the exposure fusion approach of Mertens et
al. [MKVR07] with a gradient domain solution. The fu-
sion in the gradient domain is performed by placing larger
weights to the pixels whose intensities are in the middle
of the intensity range and which have higher local contrast.
The effect of the noise on the local contrast is eliminated by
smoothing the images.

In their more recent work, Min et al. [MPC11] improve
their previous motion detection algorithm based on multi-
level threshold maps [MPC09] and employ a noise reduction
operation in the HDR reconstruction phase. As a preprocess-
ing step, all input images are registered to Lre f . The false
motion detection which occurs near the threshold values is
eliminated by removing a pixel group in image Ln from the
motion bitmap if the following two conditions hold:

1. The difference between the multi-level threshold maps of
Ln and Lre f is low for that pixel group.

2. The pixel group is not a spatial neighbor of another pixel
group whose multi-level threshold map is highly different
from that of Lre f .

In the HDR reconstruction phase, Debevec and Ma-
lik’s method [DM97] is modified by incorporating a
down-weighting term for ghost regions and filtering for
noise reduction using a structure adaptive anisotropic fil-
ter [YBFU96, MOW∗07, MW06].

Moon et al. [MTCL12] handle the ghosting problem by
introducing an additional term to the weighting formula of
Mertens et al. [MKVR07], similar to An et al. [ALKC11].
First, a histogram matching operation is applied between
each input image Ln and the reference image Lre f . Then, the
ghost presence probability for each pixel is calculated as:

Mn(p) = exp

(
−
(
Lre f (p)− L̃n(p)

)2

2cσ2
noise

)
, (20)

where L̃n(p) is the pixel value obtained after applying the
histogram matching operation to Ln, c is a user-set threshold
and σnoise is the image noise level. The value obtained as
Mn(p) is multiplied with the contrast, saturation, and well-
exposedness terms of Mertens et al. [MKVR07] to obtain the
enhanced output LDR.
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Srikantha et al. [SSM12] propose a method which works
on input images with linear CRF. Their work is based on the
assumption that if the pixels from different exposures cap-
ture a static region of the scene, they must be linearly de-
pendent since they are equal to the multiplication of sensor
irradiance and exposure time. The pixels which do not fol-
low the linearity and potentially cause ghosting are found
using singular value decomposition (SVD) of a matrix con-
taining pixel intensities from all exposures. This matrix is
reconstructed using only the largest singular values, forcing
the linearity between the corresponding pixel intensities of
different exposures. The reconstructed pixel intensities are
used to produce a ghost-free HDR image.

Zhang and Cham [ZC12b] improve their previous
gradient-based deghosting method [ZC10,ZC12a] which as-
sume that the majority of the pixels capture the static part
of the scene for each motion region. Since this requirement
is not satisfied for frequently changing scenes, here they in-
troduce a consistency check with the pixels of the reference
image instead of the majority of the exposures.

Oh et al. [OLK13] solve a rank minimization problem
which simultaneously aligns the input images and detects
moving objects together with ill-exposed regions. The pro-
posed method works on input images with linear CRF.
There are two assumptions used in this study. First, it is as-
sumed that motion regions and under-/over-exposed pixels
are sparse but cause large changes in the pixel intensities.
Second, it is assumed that the camera motion is in the form
of an homography transformation. With these assumptions
each image Ln is represented as:

In ◦h = f (k(R+Sn) ·∆ti)

= kR ·∆ti + kSn ·∆ti
= An +Sn,

(21)

where In = Ln◦h−1, ◦ is the element-wise mapping operator,
h is the homography transformation, k is a scaling factor, f is
the CRF, R is the sensor irradiance, and Sn is the sparse error
term representing motion and the saturation. The matrix A
and S are calculated by stacking the elements of each An and
Sn column-wise, respectively. It is expected that A is a rank-1
matrix and all the artifacts are contained in the matrix S with
S = 0 in an artifact-free acquisition. The matrix of observed
intensities O ◦h is decomposed into a rank-1 matrix A and
a sparse matrix S. The result of the decomposition is used to
recover the artifact-free observation of the scene.

Sung et al. [SPLC13] apply a local thresholding to the
zero-mean normalized cross correlation (ZNCC) [TDSM07]
maps, which is robust to the changes in illumination, to find
the motion regions. After Lre f is selected, the translational
and rotational alignment of the input images are performed
using the SIFT-based approach of Tomaszewska and Man-
tiuk [TM07]. Next, the motion regions are detected with an
adaptive local thresholding of ZNCC maps obtained from
the luminance channels of the input images, excluding the

saturated pixels. In the HDR construction, the weights of the
pixels in the motion regions are set to zero.

Granados et al. [GKTT13] introduce a Markov Random
Field (MRF) based approach for ghost-free HDR imaging
of dynamic scenes. In their study, if the camera motion is
present, input images are aligned with a global homography
using SURF key-points at first. Later for each pixel, consis-
tent and inconsistent subset of input exposures are found by
minimizing:

E(F) =∑
p

(
1{Pr(p|F(p)) < α}+ γ ·V (F(p))

)
+

β · ∑
(p,q)∈N

1{Pr(p|F(p,q) < α ∨ Pr(q|F(p,q)) < α},

(22)
where 1 is the indicator function, F is a mapping which as-
signs a set of input exposures as labels to each pixel, N is
4-neighborhood, and α, β, and γ are the user-set parameters.
The first summation consists of consistency and noise poten-
tial terms while the second summation is the prior potential.
The consistency and prior potentials penalize the inconsis-
tent assignment of pixel labels by F . On the other hand, the
noise potential penalizes the worsening of SNR in final HDR
image due to trivial solutions to the energy function such as
selecting only one image as a source and ignoring other in-
put images. Using this proposed method, reference image
selection and background estimation are not performed. The
authors state that their method cannot recover the dynamic
range of moving objects since moving objects are recon-
structed from a single image. In addition, since there is not
any semantic constraint in the HDR reconstruction, there
may be inconsistencies such as object repetitions and half-
included objects.

Wang and Tu [WT13] normalize the brightness level of all
input images to the brightness level of the reference image
Lre f in Lab colorspace. A ghost mask is obtained by thresh-
olding the absolute difference of pixel intensities from each
input image Ln and Lre f . The adaptive threshold Tn(p) is
given as:

Tn(p) = |∆l̄n|β +
(

Ln(p)−50
15

)2

, (23)

where ∆l̄n is the average brightness difference and β is a
user-selected tolerance factor. The ghost masks are refined
using morphological operations and the complement of the
ghost mask is used as the fourth term of the weight formula
of Mertens et al. [MKVR07] to produce the output.

Lee et al. [LLM14] propose another rank minimization
approach which is very similar to Oh et al. [OLK13]. The
optimization function used in Lee et al. [LLM14] does not
contain homography mappings but instead includes a sepa-
rate variable as the ghost mask.
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3.4. Moving Object Registration

Moving object registration methods focus on recovering or
reconstructing the pixels affected by the movement by find-
ing a local correspondence for the regions affected by mo-
tion. The main difference between the registration-based
deghosting algorithms is their alignment strategy, such as
feature matching (e.g. SIFT, Harris corner detector, etc.) or
the alignment quality metric they use (e.g. Sum of Squared
Differences, Cross-Correlation, etc.). Since the image reg-
istration task is a well-studied problem in other image pro-
cessing domains, the set of algorithms in this class is very di-
verse and divided into subgroups. While optical-flow based
approaches find a pixel-wise matching between the input
images, patch-based methods use image patches and patch-
based matching strategies to eliminate ghost regions. How-
ever, it should be noted that patch-based may also register
individual pixels (similar to optical-flow) by computing the
dense correspondence of overlapping patches around pixels.

3.4.1. Optical-flow based

The approaches in this group are mostly based on optical-
flow estimation, which is a well-studied problem especially
in stereo vision applications. In the HDR domain, optical-
flow estimation must also take the exposure differences be-
tween the input images into account. The accuracy of the
estimation is very critical for the quality of the outputs since
any mismatch results in undesirable artifacts. In addition, use
of optical-flow presents other challenges such as handling
the occlusion, noise, or large displacements in the scene.

Bogoni [Bog00] introduces a pattern-selective fusion pro-
cess which uses Laplacian pyramid [BA83] representation
of the input images. This fusion process is very sensitive to
the correct alignment of the input images. In order to pre-
vent ghosting artifact due to motion, their method employs
a two-phase alignment strategy. First, global affine transfor-
mation is performed to eliminate the effects of the camera
motion. Second, optical-flow is estimated between the input
images and Lre f . The use of Laplacian pyramid represen-
tation in both image fusion and optical-flow estimation de-
creases sensitivity to the changes in exposure.

Hossain and Gunturk [HG11] begin with estimating the
intensity mapping function gnm from the input image Ln to
another input image Lm. Then the dense motion fields un
are estimated using the optical-flow estimation algorithm of
Zach et al. [ZPB07], minimizing the forward and backward
flow residuals rn and rm:

rn(p) = Lm(p−un(p))−gnm(Ln(p)),

rm(p) = Ln(p+un(p))−gmn(Lm(p)).
(24)

Starting with a static motion field u(p) = 0, u and g are up-
dated iteratively by minimizing the residuals until conver-
gence. In order to obtain an estimate of gnm which is robust
to the effects of occlusion, each pixel p in each image Ln is

assigned an occlusion weight wn(p) with the following sig-
moid function:

wn(p) = 0.5− tan−1((|rn(p)|−µ)/πσ), (25)

where µ and σ are the parameters controlling the shape of
the function. The weights wn(p) measure the likelihood of
the visibility of pixel p in the other image Lm. The intensity
mapping functions are estimated on the weighted histograms
using wn(p).

Zimmer et al. [ZBW11] present an energy-based method
for estimating the optical-flow. This approach is claimed to
be robust in the presence of noise and occlusion. One of the
images in the input LDR set is selected as reference and
dense displacement fields un between Lre f and each input
image Ln is estimated by minimizing:

E(un) = ∑
p
[D(un)+ γS(∇un)] , (26)

where γ is the weighting coefficient, D is the data term mea-
suring the quality of the alignment in the gradient domain
and S is a spatial smoothness term penalizing sharp changes.
The output displacement fields have subpixel precision and
they are used to construct a super-resolution HDR image.

Ferradans et al. [FBPC12] find dense correspondence of
input images in the radiance domain with respect to Lre f . In
order to detect the mismatches in the estimated flow fields
un, the input images are warped using the estimated fields
and the absolute difference map Mn(p) of each pixel Ln(p)
is calculated. Instead of applying a fixed threshold to Mn(p),
its histogram is modeled as a mixture of Gaussians. un(p) is
detected as a mismatch if the following is true:

|Mn(p)−µ|> βσ, (27)

where µ and σ are the mean and standard deviation of the
most probable Gaussian fit, respectively, and β is a user-
defined factor. The pixel intensities corresponding to the
flow vectors causing the mismatch are assigned zero weight
in HDR reconstruction. The information from the remaining
pixels in each Ln are fused in the gradient domain.

Jinno and Okuda [JO12] use a novel weighting function
which has significantly smaller overlap between the contri-
bution of input LDR images to the radiance domain. The
proposed method assumes that the global alignment is al-
ready performed. Displacement, occlusion, and saturation
regions are modeled as Markov Random Fields d = {d(p)},
o = {o(p)} and s = {s(p)} respectively, where p ∈ Λ and
Λ = {(i, j)|(i, j)∈R2} is the discrete sampling lattice. o and
s are binary random fields. The optimal d, o, and s are found
by minimizing the following energy function:(

d∗,o∗,s∗
)
=argmin

d,o,s
{U(Li|d,o,s,L j)+U(d|o,s,L j)

+U(o|s,L j)+U(s|L j)}.
(28)

U(Li|d,o,s,L j) measures the accuracy of the motion
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estimation, ignoring saturation and occlusion regions.
U(d|o,s,L j) measures the smoothness of displacement vec-
tors. U(o|s,L j) and U(s|L j) penalize isolated small regions
in saturation and occlusion maps. The resulting motion esti-
mates, saturation and occlusion regions are used to combine
the input images.

Hafner et al. [HDW14] propose an energy-minimization
approach which simultaneously calculates HDR irradi-
ance together with the displacement fields. The displace-
ment fields have sub-pixel accuracy, similar to Zimmer et
al. [ZBW11]. The energy function is defined as:

E(H,W) =
∫
Ω

(
N

∑
i=1

Mi +α ·
N

∑
i=1

Sui +β ·SH

)
dx, (29)

where Ω represents the rectangular image domain, W =
{u1, ...,uN} is the set of displacement fields, Mi is the data
term measuring the difference between the predicted and ac-
tual pixel values, Sui is the spatial smoothness term of the
displacement field and SH is the spatial smoothness term
of the irradiance map. A coarse-to-fine pyramid structure is
used in the minimization to avoid local minima.

3.4.2. Patch-based

Patch-based algorithms aim to recover or reconstruct the po-
tential ghost regions in the output image by transferring in-
formation from a subset of input images which are deter-
mined via a patch-based matching strategy. Empirically, the
methods described in this class seem to generate the high-
est quality outputs. However, due to the intensive searching
and patching operations, they are computationally the most
costly as well.

Menzel and Guthe [MG07] introduce a motion compen-
sation method which addresses both the camera and the
scene motion. Their study takes into account the parallax
and occlusion effects caused by the camera movement as
well. The proposed method is limited to three input im-
ages {L1,L2,L3}. First, L1 and L3 are aligned to L2 us-
ing a method called hierarchical block matching (HBM).
The HBM operation is based on the motion estimation of
each macroblock M in Lre f , maximizing the cross correla-
tion between each Li and the reference image Lre f . Instead
of using a fixed macroblock size, the matching procedure
is performed in an hierarchical manner. The pixel-wise dis-
placements are estimated using bilinear interpolation of the
smallest macroblocks in the hierarchy. Then the HDR im-
age is synthesized using Equation 3. Possible mismatches
and ghost regions are detected using cross correlation. The
weights, α, of the pixels in these regions are set to zero.

The algorithm of Park et al. [POK∗11] operates on two
uncompressed Bayer RAW images Rs and Rl with different
exposures. In their study, Park et al. handle the unsuccessful
alignments and color artifacts caused by over and underex-
posed pixels in or around the moving objects. From the two

input images Rs with short exposure and Rl with long expo-
sure, Rs is selected as the reference image. In Rs, instead of
clipping the under-exposed pixels with low SNR, the wavelet
denoising method of Yoo et al. [YLC∗10] is applied. After
the denoising, the exposure of Rs is normalized using his-
togram matching. The exposure-normalized Rs and Rl are
spatially aligned using hierarchical block matching. Ghost
regions are detected in two steps. In the first step, pixel in-
tensity differences are thresholded using a large threshold
value, which provides a high confidence detection. In the
second step, a region growing operation is applied to the ini-
tial ghost regions using a smaller threshold value. Therefore,
the ghost regions with lower confidence are ignored if they
are not spatially connected to any high confidence detection.
The ghost regions in Rl are patched using Rs. During HDR
reconstruction, Rl and Rs are registered in two steps. In the
first step, background alignment is performed to handle the
camera movement. In the second step, foreground alignment
is performed which addresses object movements.

Zheng et al. [ZLZR11] introduce a method which con-
sists of a pixel-level movement detection followed by a hy-
brid patch-based scheme. First, the inconsistent pixels which
may cause ghosting artifacts are identified using the method
of Li et al. [LRZ∗10] (see above) with pairwise compari-
son of the subsequent LDR images. Among the compared
pair of images, if the IMF is reliable, the inconsistent pix-
els are reconstructed by transferring pixel intensities using
the IMF. The IMF is assumed to be unreliable if the pixel
intensity values are closer to 0 or 255. In those cases, the ab-
solute derivative of the camera response function tends to get
very large and the IMF does not provide a one-to-one map-
ping between pixel intensities of different exposures. If the
IMF is unreliable, then iterative block-based patching is per-
formed instead of the pixel-wise patching. The block-based
patching searches for the best matching block in a predefined
search window in both pairs of the compared LDR images.
The resulting patched LDR images are fused to an HDR im-
age using the method of Debevec and Malik [DM97].

Hu et al. [HGP12] introduce a homography-based patch-
ing approach to handle the scene movement. First, they find
the dense correspondence between each input image and the
reference image based on HaCohen et al. [HSGL11]. Then,
the IMF is estimated for each color channel by fitting cu-
bic Hermite splines using RANSAC [FB81] to the observed
pixel intensity pairs. The estimated IMF is used to find mo-
tion regions where the pixel intensities are not consistent
with the IMF. The gaps formed after the forward warping
operation and the motion regions detected using the IMF are
filled by defining local homographies between the images
using RANSAC. Due to the irregular shapes of the gaps, a
rectangular bounding box is defined around each gap which
typically covers some of the pixels previously synthesized
using forward warping as well. To test for the robustness
of the defined homography, the normalized cross-correlation
is measured between the pixels which are already synthe-
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sized and the corresponding pixels from the source images.
A high normalized cross-correlation indicates a consistent
patch, in which case the patching is performed successfully.
Otherwise, only the reference image is used to fill the gaps.
Resulting images are fused with the method of Mertens et
al. [MKVR07].

Sen et al. [SKY∗12] propose a PatchMatch [BSFG09]
based energy minimization approach for HDR reconstruc-
tion. The proposed approach is designed for LDR images
with linearized CRFs. The energy function is in the follow-
ing form:

E(H) = ∑
p∈pixels

[
αre f (p) · (Ere f (p)−H(p))2

+ (1−αre f (p)) · EMBDS(H|L1, ...,LN)
]
,

(30)

where EMBDS is the Multisource Bidirectional Similarity
(MBDS) measure which is an extension to BDS introduced
by Simakov et al. [SCSI08]. In case of poorly exposed pix-
els, α function decreases the weight of the information trans-
ferred from the reference image, while the weight of the
second term is increased, which transfers information from
the other input images. Subsequently, the output HDR im-
age is aligned to the reference LDR image and it contains
maximum amount of information from the reference image
if the pixels are well-exposed. Instead of solving for output
HDR image directly, auxiliary images are obtained using the
search and vote scheme of Simakov et al. [SCSI08]. Later
these auxiliary images are merged to obtain an intermediate
HDR image. The auxiliary images are iteratively initialized
and updated until convergence using the intermediate HDR
image and the search and vote approach. This procedure is
performed over multiple scales.

Orozco et al. [OMLV12] presents a method which con-
sists of both ghost detection and image registration steps. In
the ghost detection step, the detection algorithms of Pece and
Kautz [PK10], Jacobs et al. [JLW08], Sidibe et al. [SPS∗09]
and Grossberg et al. [GN03] are compared and it was found
that the IMF based ghost detection of Grossberg et al. is the
most accurate. In the image registration phase, an intensity-
based method without feature detection is employed. The
image with the best exposure is selected as the reference im-
age. A bounding box is fitted around the previously detected
motion regions. Next, the region in each bounding box is
registered by translation and rotation to the reference image.
The Sum of Squared Distances (SSD), Normalized Cross
Correlation (NCC), Mutual Information (MI) and Median
Bitmap Difference (MBD) are compared as a similarity mea-
sure for the registration. The authors state that NCC has the
best computational cost and performance. In order to speed
up the process, the registration is performed using the pyra-
mid structure of the images, from coarse to fine resolution.
However, since the registration applies only translational and
rotational transformations, more complex motions caused by
objects with deformable bodies are not handled.

Hu et al.’s more recent work [HGPS13] proposes another
PatchMatch [BSGF10] based HDR reconstruction algorithm
with energy minimization. Among the input LDR images,
the one with the largest number of well-exposed pixels is se-
lected as Lre f . Next, for each input LDR image Li, a latent
image Ti is synthesized. Latent images are similar to Lre f
where it is well-exposed. In under- or over-exposed regions,
a matching patch is found using the PatchMatch algorithm in
other input images. Using the matching patches and the in-
tensity mapping function obtained with the histogram-based
method of Grossberg and Nayar [GN03], the latent images
are obtained by minimizing the following energy function:

E(T,τ,u) =Cr(T,Lre f ,τ)+Ct(L,T,u), (31)

where L, T and u are the sets of input images, latent images
and coordinate mappings to matching patches, respectively.
The Cr and Ct terms measure the radiometric and the texture
consistencies between the reference image and the input im-
ages, respectively. As opposed to Sen et al. [SKY∗12], Hu et
al. does not require the CRFs of the input images to be linear.
In one comparison study [TAEE14], it is observed that Hu
et al. was more successful at producing noise-free outputs
whereas Sen et al. was better at preserving texture details.

In their more recent work, Zheng et al. [ZLZ∗12,ZLZ∗13]
formulate the patching operation as an optimization problem
minimizing the following function for each input image Ln:

∑
p∈Mn

‖∇Λn,r(n)(Ln(p))−∇Lr(n)(p)‖2, (32)

where Mn is the set of pixels affected by motion, ∇ is the
gradient operator, Λn,r(n) is the intensity mapping function
from Ln to Lr(n) and r(n) is the index of the reference image
for Ln.

3.5. HDR Video Deghosting

The methods introduced in this section are specially crafted
for HDR video deghosting. Although they share some com-
mon approaches with the previous HDR deghosting meth-
ods, such as the optical-flow and patch-based registration op-
erations, they have some distinct properties which are only
applicable to videos.

Kang et al. [KUWS03] proposed an optical-flow based
image warping method which is applied to the LDR
frames captured using temporal exposure bracketing to pro-
duce an HDR video. Similar to [Bog00], they apply a
global affine transformation followed by a local optical-
flow based correction. For the motion estimation, a vari-
ant of the Lucas-Kanade [LK∗81] is used, which works
on the Laplacian pyramid representation as proposed by
Bergen et al. [BAHH92]. With three consecutive exposures
Ln−1,Ln,Ln+1 and Ln being the target, Ln−1 and Ln+1 are
unidirectionally warped to Ln. If Ln is ill-exposed, the uni-
directional optical-flow estimation is unreliable. In that case,
an interpolated frame In is created using only Ln−1 and Ln+1
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in bidirectional motion estimation. In order to align In with
Ln, the authors use a hierarchical homography-based regis-
tration.

Sand and Teller [ST04] propose an approach for the
spatio-temporal alignment of the frames from two videos of
a dynamic scene. Their alignment algorithm provides both
an optical-flow field and a temporal offset between match-
ing frames. The flow field is estimated by finding pixel-wise
correspondences using Harris corner detector [HS88] and
assigning a weight to each one of them, depending on the
correspondence quality. The weights consist of two terms;
namely, a pixel matching probability and a motion consis-
tency probability. The pixel matching probability is calcu-
lated by comparing the pixel intensity of the primary frame
with the minimum and maximum intensities observed in the
3× 3 neighborhood of the corresponding pixel in the sec-
ondary frame. The second term of the weight, the motion
consistency probability, is based on the difference between
the observed motion vector and the motion vector predicted
using adaptive locally weighted regression.

Mangiat and Gibson [MG10] propose a deghosting
method designed for HDR video reconstruction from the
frames of an LDR video with alternating short and long
exposures similar to Kang et al. [KUWS03]. The motion
estimation process begins with normalizing short exposure
frame Ls using:

L̃l = g−1(g(Ls)− ln∆ts + ln∆tl), (33)

where g = ln f−1, Ll is the long exposure frame, ∆ts and ∆tl
are the corresponding exposure times. The authors state that
an optical-flow approach similar to Kang et al. [KUWS03]
is not suitable here due to amplified noise and the possi-
bility of large displacements. Instead, block-based forward
and backward motion vectors for the current frame Ln is es-
timated using the previous frame Ln−1 and the next frame
Ln+1. Motion vectors are calculated using Enhanced Predic-
tive Zonal Search (EPZS) in H.264 JM Reference software
using Sum of Absolute Differences (SAD) matching mea-
sure. After forward and backward motion estimation, simi-
lar to Kang et al. [KUWS03], bidirectional motion estima-
tion is performed. Bidirectional motion estimation provides
the motion vectors for the saturated blocks in Ln. The ob-
tained motion fields are refined using a method similar to
the pixel-level refinement of Matsushita et al. [MOG∗06]. In
order to prevent the boundary artifacts around blocks, cross-
bilateral filtering is applied to the output HDR frames. The
outputs may contain some registration artifacts on the sat-
urated moving objects, which is addressed by the authors’
more recent work [MG11].

Castro et al. [CCCV11] propose an algorithm which is
suitable for portable platforms with limited computational
resources. The input of the algorithm is the frames of an
LDR video with 0, +1 and −1 EV. After a photometric cal-
ibration step, for each frame in the triplet, the alignment of

the remaining 2 frames is performed using the method of
Ward [War03]. The object motion is addressed by calcu-
lating the variance of each pixel in three exposures. If the
variance is low, it is assumed that the set of three frames is
free of motion and all of them are used during radiance map
construction. Otherwise, a larger weight is given to a single
frame.

Chapiro et al. [CCV11] provide an application of the ex-
posure fusion [MKVR07] to HDR videos by introducing a
fourth term to the weighting function. This term takes lower
values in the presence of motion, which is detected by using
the total absolute difference of pixel blocks as a measure.

Kalantari et al. [KSB∗13] introduce a patch-based HDR
synthesis method. Similar to Kang et al. [KUWS03] and
Mangiat and Gibson [MG10], the inputs are frames of an
LDR video with periodically alternating exposures. There is
no reduction in the number of frames in the HDR recon-
struction process. For each frame Ln, different exposures are
constructed using the information from temporally neighbor
frames Ln−1 and Ln+1. The proposed framework is an ex-
tension of Sen et al. [SKY∗12] to video with temporal co-
herence. This is done by replacing Bidirectional Similarity
(BDS) term with Temporal Bidirectional Similarity (TBDS),
which measures BDS of Ln with Ln−1 and Ln+1. In order to
accelerate the search and vote procedure, the patch searches
in TBDS are constrained around an initial motion estimation
which is based on planar model for global motion estimation
and optical flow for local motion estimation. Although per-
ceptually insignificant, the authors state that use of motion
estimation and optical flow may sometimes result in artifacts
around motion boundaries such as blurring and partially dis-
appearing object parts.

4. The Experiment

Our subjective evaluation methodology is similar to the ap-
proach followed by Rubinstein et al. [RGSS10] where the
authors conducted a pairwise comparison experiment via a
web-based interface. The set of evaluated deghosting algo-
rithms were: (A) Grosch [Gro06], (B) Khan et al. [KAR06],
(C) Sen et al. [SKY∗12], (D) Silk and Lang [SL12], (E) Hu
et al. [HGPS13], (F) a simple baseline deghosting algorithm
discussed in the next subsection, and (G) no deghosting as a
control condition.

Among these algorithms, (A) was selected as a relatively
simple older-generation deghosting algorithm. (B) was se-
lected as the representative of the category which aims to
completely eliminate moving objects. (C) and (E) were se-
lected as they represent highly sophisticated state-of-the-art
algorithms. (D) was selected as a relatively simple but more
recent algorithm. (F), which is described in the next subsec-
tion, was selected as a simple baseline algorithm. Finally,
(G) which represents no deghosting was selected as a con-
trol condition to assess the reliability of the subjective exper-
iment.
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The implementations of A, C, D, and E were made avail-
able by the authors of the algorithms (for A as an executable
kindly provided to us by the author). For D the fluid mo-
tion (FM) outputs were tested since the number of input
images was relatively low and they were dynamic through-
out whole acquisition process. Although an implementation
of B is provided as part of open-source software Hugin-
2013.0.0 [Hug], we reimplemented it in MATLAB as the
Hugin results did not replicate the same results for the im-
ages used by Khan et al. in their original paper. The simple
deghosting algorithm, F, was also implemented by the cur-
rent authors.

4.1. Simple Deghosting Algorithm

The simple deghosting algorithm is our implementation of
a simple ghost detection followed by a Laplacian pyramid
[BA83] blending operation for merging images. The input
images were generated from the RAW files with linear cam-
era response functions (CRF). For each pair of input images
Li and L j, a ghost bitmap Gi j is obtained with:

Gi j(p) =
|Li(p)∆t j

∆ti −L j(p)|
L j(p)

> 0.1, (34)

which marks a pixel in the bitmap if there is more than
10% deviation in the predicted pixel intensity value. Only
well-exposed pixels are used in this ghost detection opera-
tion. The final ghost detection mask is obtained by merg-
ing all bitmaps with logical-OR operation. In the final step,
HDR image H is obtained by using the method of Debevec
and Malik [DM97] and the regions which are marked in
the ghost detection mask are filled using the pixel values
from only the middle exposed image in the radiance domain.
Laplacian pyramid [BA83] is used to avoid seams between
the regions taken only from the middle exposure and the
neighboring pixels computed from multiple images. Note
that this algorithm does not involve global exposure regis-
tration. However, in case of camera movement the MTB al-
gorithm [War03] could be used to align the exposures in a
pre-processing step.

4.2. Benchmark Dataset

For the experiments, we acquired images of 10 different
scenes with different characteristics. The acquisition settings
and the image properties of the scenes used in the experi-
ment are given in Table 2. The stacks are taken with a tri-
pod and no preliminary global registration is applied to the
images. Each scene consisted of 3 LDR images with ±1
EV difference. Each input image was resized to 1024×683
dimensions for computational considerations. For any spe-
cific scene, only the exposure time was varied among the
exposures while the ISO setting and F-number parameters
were fixed. The input image with 0 EV was used as the ref-
erence exposure if a reference image was required by the

tested algorithms. All images were captured in the RAW
format. Subsequently, RAW images were converted to 8-bit
LDR images with linear camera response function (CRF) us-
ing the DCRaw [Cof] software. The output of HDR images
were tonemapped using the photographic tonemapping op-
erator [RSSF02] for visualization purposes. A representative
image for each of these scenes is shown in Figure 3.

We give priority to cover the most frequently observed
real-world ghosting scenarios as much as possible in the set
of test scenes. Both indoor and outdoor scenes, small and
large object displacements, deformable and non-deformable
motion patterns as well as different types of moving objects,
lighting conditions and noise levels are mostly represented in
the dataset. However, the number of the test scenes is open
for growth and we are planning to extend the dataset further
in our future studies, focusing on the test cases where it is
critical for the algorithms to recover the full dynamic range
of saturated motion regions.

4.3. Experimental Setup

As mentioned above, the experimental design was pairwise
comparisons similar to Rubinstein et al. [RGSS10]. How-
ever, as deghosting algorithms operate on an exposure stack,
rather than a single image as in image retargeting, the par-
ticipants were presented with 3 exposures on the left side of
the screen. To maximize image size, only one exposure was
shown in high resolution. By hovering the mouse over the
thumbnails at the top the participants could view each input
exposure in high resolution. Furthermore, by hovering the
mouse over the exposures a zoomed-in view of the region
under the mouse pointer was presented as an overlay in a
small window. A pair of deghosting results were presented
on the right side of the screen which could be switched and
zoomed-in similar to the input exposures. To indicate their
preference, the participants first selected the thumbnail that
corresponds to the preferred result and then clicked the sub-
mit button at the bottom of the page (see Figure 4).

For each participant, the experiment started with a short
warm-up session comprised of 3 comparisons during which
the responses were not recorded. During the actual exper-
iment, each participant compared 60 pairs of images. The
exact phrase used in the comparison page was “Please select
the image that you think is the better deghosting result cre-
ated from the multiple exposures.” The progress bar at the
bottom of the page showed the participants’ progress. All
participants performed the experiment using their own com-
puters (as in a crowd-sourcing study) and were able to finish
the experiment within 30 minutes.

The first page of the web-interface briefly informed the
participants about the HDR deghosting problem and what
was expected of them. It also collected information about
the participants’ age, gender, and familiarity with computer
graphics and image processing. In total, 63 participants (13F
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(a) Cafe (b) Candles (c) FastCars (d) Flag (e) Flag

(f) Gallery2 (g) LibrarySide (h) Shop1 (i) Shop2 (j) WalkingPeople

Figure 3: A representative image for each scene

Table 2: Acquisition settings and image properties for the scenes used in the experiment.

Scene Camera Exposure Time ISO F-number Properties
Cafe Nikon D5100 1/250 320 5.0 Indoor scene with multiple moving human subjects

Candles Canon 550D 1/128 6400 4.6 Indoor scene with low-lighting conditions including moving light sources and high noise
FastCars Canon 550D 1/256 1600 5.0 Outdoor scene including non-deformable body motion with large spatial displacements

Flag Canon 550D 1/256 100 11.3 Outdoor scene with deformable-body motion
Gallery1 Nikon D5100 1/250 250 4.0 Indoor scene with moving human subjects on dim background
Gallery2 Nikon D5100 1/250 2500 3.5 Indoor scene with moving human subjects on strongly-lit background

LibrarySide Canon 550D 1/100 6400 3.5 Outdoor scene with low-lighting conditions including moving people in strongly-lit environment
Shop1 Nikon D5100 1/250 320 5.6 Indoor scene with reflections and moving human subjects on strongly-lit background
Shop2 Nikon D5100 1/250 320 7.1 Indoor scene with a single moving human subjects

WalkingPeople Canon 550D 1/256 200 4.6 Outdoor scene with moving human subjects with occlusion

and 50M) finished the experiment from the beginning to the
end, and their data was used in the subsequent analysis. Of
the 63 participants, 33 indicated they work in the field of
computer graphics and image processing, 14 indicated they
consider this field as a hobby, and 16 indicated that they do
not have any specific interest in the field. The participants
ages were distributed between 21 and 50 with the mode age
being 25 and the mean 31.

We note that the total number of comparison pairs was
equal to 10×

(7
2
)
= 210. Each participant evaluated a random

selection of 60 pairs among these. To ensure that each pair
was evaluated equal number of times, we saved information
about how many times a pair was compared. When a new
participant started the experiment, the least frequently com-
pared 60 pairs were selected in random order. This ensured
that when 7 participants completed the experiment, each of
the 210 pairs was compared exactly twice (7×60= 210×2).
Thus, after all 63 participants finished the experiment, each
possible pair was compared exactly 18 times.

4.4. Data Analysis

In a paired comparison test, each participant makes a bi-
nary choice in each one of the possible pairs of items. With
t items, there are

(t
2
)

pairs to compare. The results of the
comparisons are represented by an aggregate preference ma-
trix A =

[
ai j
]

where ai j is the number of times item i is

Figure 4: Screenshot of the pairwise comparison task.

preferred over algorithm j. The probability of item i being
preferred over item j is πi j. The mean of the probability of
an algorithm i being preferred over other algorithms is:

πi =
1

t−1

t

∑
j=1, j 6=i

πi j. (35)

An estimate of πi is given by:

πi =
ai

n(t−1)
, (36)

where n is the number of comparisons per item and
ai = ∑

t
j=1 ai j. In order to analyze the significance of the
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Table 3: The aggregate preference matrices for each scene used in the experiment. Each cell shows the number of times the row
algorithm is preferred over the column algorithm. Please refer to text for the algorithm labels. The statistical similarity groups
are indicated in the last column with lower group numbers corresponding to higher preference.

Cafe Gallery2

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 3 17 2 2 17 59 2 A 0 16 2 17 10 6 18 69 2
B 0 0 4 18 0 2 13 37 3 B 2 0 1 17 4 2 17 43 3
C 15 14 0 18 13 16 16 92 1 C 16 17 0 18 17 11 16 95 1
D 1 0 0 0 0 0 0 1 4 D 1 1 0 0 2 1 3 8 4
E 16 18 5 18 0 8 16 81 1 E 8 14 1 16 0 0 16 55 2,3
F 16 16 2 18 10 0 18 80 1 F 12 16 7 17 18 0 17 87 1
G 1 5 2 18 2 0 0 28 3 G 0 1 2 15 2 1 0 21 4

Candles LibrarySide

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 1 17 1 0 10 47 3 A 0 16 12 18 11 16 18 91 1
B 0 0 0 0 1 1 2 4 4 B 2 0 2 17 1 1 13 36 3
C 17 18 0 18 15 17 18 103 1 C 6 16 0 17 13 17 16 85 1
D 1 18 0 0 0 1 0 20 4 D 0 1 1 0 1 1 3 7 4
E 17 17 3 18 0 15 18 88 1, 2 E 7 17 5 17 0 14 16 76 1
F 18 17 1 17 3 0 17 73 2 F 2 17 1 17 4 0 14 55 2
G 8 16 0 18 0 1 0 43 3 G 0 5 2 15 2 4 0 28 3

FastCars Shop1

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 1 17 2 1 17 56 3 A 0 15 9 17 6 7 18 72 1
B 0 0 1 8 2 1 12 24 4 B 3 0 4 12 4 4 15 42 2
C 17 17 0 18 4 10 17 83 1, 2 C 9 14 0 18 5 10 18 74 1
D 1 10 0 0 0 2 8 21 4 D 1 6 0 0 1 2 13 23 3
E 16 16 14 18 0 15 17 96 1 E 12 14 13 17 0 11 17 84 1
F 17 17 8 16 3 0 17 78 2 F 11 14 8 16 7 0 17 73 1
G 1 6 1 10 1 1 0 20 4 G 0 3 0 5 1 1 0 10 3

Flag Shop2

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 12 17 10 6 15 78 2 A 0 12 2 13 2 1 16 46 2
B 0 0 0 1 0 1 7 9 4 B 6 0 4 14 3 2 17 46 2
C 6 18 0 18 9 3 15 69 2 C 16 14 0 14 15 7 17 83 1
D 1 17 0 0 2 0 15 35 3 D 5 4 4 0 1 3 17 34 2
E 8 18 9 16 0 2 16 69 2 E 16 15 3 17 0 11 17 79 1
F 12 17 15 18 16 0 18 96 1 F 17 16 11 15 7 0 17 83 1
G 3 11 3 3 2 0 0 22 3, 4 G 2 1 1 1 1 1 0 7 3

Gallery1 WalkingPeople

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 15 6 14 6 9 16 66 2 A 0 16 8 17 2 12 17 72 2,3
B 3 0 1 9 2 2 16 33 3 B 2 0 2 16 1 1 16 38 4
C 12 17 0 16 6 10 16 77 1, 2 C 10 16 0 17 5 16 18 82 1,2
D 4 9 2 0 0 1 12 28 3, 4 D 1 2 1 0 0 1 6 11 5
E 12 16 12 18 0 13 16 87 1 E 16 17 13 18 0 15 18 97 1
F 9 16 8 17 5 0 17 72 1, 2 F 6 17 2 17 3 0 17 62 3
G 2 2 2 6 2 1 0 15 4 G 1 2 0 12 0 1 0 16 5

scores, we used the statistical data analysis method of Starks
and David [SD61] which tests the following null hypothesis:

H0 : πi = π j,∀i, j. (37)

A special case of the test given by Durbin [Dur51] expects
that if H0 is true (i.e. all compared items are alike), the fol-
lowing D value follows approximately χ

2 distribution with

t−1 degrees of freedom:

D =
t

∑
i=1

d2
i =

4
nt

t

∑
i=1

(ai− ā)2,

=
4
nt

t

∑
i=1

a2
i −

1
4

tn2(t−1)2.

(38)

Using the formula of Durbin, if D is greater than the critical
value χ

2
α for a selected significance level α, it is possible to

reject H0. For a significance value of α = 0.05, the corre-
sponding χ

2
0.05 = 12.592. In our experiment, it was possible

to reject H0 for each scene with D values greater than 100
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Table 4: Total aggregate preference matrix of the participants
in the subjective experiment and algorithm scores consisting
of total number of preferences

A B C D E F G Sum

A 0 162 56 164 52 60 162 656
B 18 0 19 112 18 17 128 312
C 124 161 0 172 102 117 167 843
D 16 68 8 0 7 12 77 188
E 128 162 78 173 0 104 167 812
F 120 163 63 168 76 0 169 759
G 18 52 13 103 13 11 0 210

(with the minimum D as 118.5 for the Shop2 scene). Rejec-
tion of H0 allows one to perform pairwise comparison tests
in order to group the algorithms into statistical significance
groups. For two scores ai and a j, Starks and David [SD61]
calculate the smallest amount of statistically significant dif-
ference required as:

mc = d1.96(0.5nt)0.5 +0.5e. (39)

If |ai − a j| ≥ mc is satisfied, it is possible to conclude
that there is a statistically significant difference between
the scores of compared items with a significance level of
α= 0.05. In this study, we found that mc = 17 for each scene
and mc = 50 for aggregate results. The significant groups de-
termined using these mc values are given in Table 3 for each
scene and in Table 5 for total aggregate preference matrix.

5. Results

In this section, we first present the results of the subjective
experiment and interpret them based on the outputs gener-
ated by the algorithms. Next, we discuss the runtime per-
formance of the algorithms. Finally, we investigate whether
the observed findings can be correlated with two objective
metrics.

5.1. Experimental Results

The results of the subjective experiment for each scene is
given in Table 3. In this table, each matrix represents the re-
sults for a single scene. The cell values indicate how many
times the row algorithm was preferred over the column algo-
rithm. The last column for each scene indicates the statistical
similarity groups with lower numbered groups correspond-
ing to higher preference. The aggregate results obtained by
accumulating the preference matrices for each scene is given
in Table 4. The statistical similarity groups for the aggregate
results are separately presented in Table 5 for clarity pur-
poses.

From these results we can make the following observa-
tions. Sen et al.’s [SKY∗12] and Hu et al.’s [HGPS13] meth-
ods are clear winners based on the aggregate rankings. These

Table 5: Ranks and significant groups of the algorithms ac-
cording to the scores (ai)

Group Algorithms
1 C - Sen et al. [SKY∗12] (843),

E - Hu et al. [HGPS13] (812)
2 F - SimpleDG (759)
3 A - Grosch [Gro06] (656)
4 B - Khan et al. [KAR06] (312)
5 G - NoDG (210),

D - Silk and Lang [SL12] (188)

methods also outperform all other methods for each scene
with a few exceptions. In general, Sen et al.’s method was
selected as the best algorithm for all scenes except the Flag
scene. Hu et al.’s method was also in the first group except
the Gallery2 and Flag scenes. When these methods were not
the winner, they ranked the second. This suggests that these
two patch-based algorithms are quite stable with respect to
changing scene contents and different types of ghosting arti-
facts. In general, both methods appeared to be artifact-free.
However, it was observed that they may produce outputs that
have slightly less contrast compared to Grosch [Gro06] and
the simple deghosting algorithm discussed in Section 4.1.
This may explain their second ranking for the Flag scene as
all four methods produced artifact-free images but the latter
two produced higher contrast (please refer to supplementary
materials as these differences are best observed in high res-
olution images).

An interesting observation is that the simple deghosting
algorithm (F) explained in Section 4.1 performed relatively
well in the experiment; it was placed by itself in the sec-
ond group. In fact, the per-scene results suggest that many
times this simple algorithm was ranked in the first signifi-
cance group (for Cafe, Gallery2, Shop1, Flag, Shop2, and
Gallery1). The worst result for this algorithm was observed
in WalkingPeople where the simple algorithm was ranked as
the third. This suggests that, when it comes to deghosting,
a simple solution may sometimes outperform more sophis-
ticated algorithms assuming that the exposures are captured
using a tripod or registered during a preprocessing step (this
simple method generally outperformed Grosch, Khan et al.,
and Silk and Lang’s algorithms). This may be attributed to
the fact that the simple method does not generate any addi-
tional artifacts which are sometimes observed in more so-
phisticated algorithms.

Grosch’s method [Gro06] seems to have the highest
amount of variance between the rankings in different scenes.
While it performs very well (ranked in the first group) for
LibrarySide, Shop1, and Flag scenes it performs the worst
for the Candles scene. In other scenes, it occupies the sec-
ond and third rankings. This variation suggests that this al-
gorithm’s results are highly sensitive to scene content and
the types of ghosting artifacts that are present. Figure 5 il-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5: Outputs of Grosch [Gro06] for selected scenes. (a), (c), and (e) show the results for Candles, FastCars and Shop2
scenes, (g) shows one of the input LDR exposures for Shop2, (b), (d), (f) and (h) magnify the problematic regions. In (b), the
sharp transition between the source images is easily observable which is attributed to the lack of a smooth blending operation.
In (d), some parts of the car are replaced with the background on the left and some parts of another car remain on the right due to
the color similarity between the object and the background. In (f), the presence of the black colored cloth (underexposed pixels)
and the movement at the same regions result in incorrect filling of the region, leaving visible boundaries. The same region of a
single input exposure is provided in (h) for reference.

lustrates some of the artifacts created by this algorithm and
discusses their causes.

Khan et al.’s method [KAR06] performed relatively
poorly in the experiment with also a high degree of vari-
ation. It performed the worst for the Candles scene which
depicts a low-light environment with high noise. It is quite
possible that the amount of noise present in the exposures
interfered with the algorithm’s weight computation. For a
few scenes such as Shop1 and Shop2, this algorithm per-
formed relatively well, occupying the second ranking. For
the remaining scenes, Khan et al.’s algorithm occupied the
third and fourth rankings. As such, this algorithm also ex-
hibited a high degree of variation across scenes. One pos-
sible reason for the low performance of this algorithm may
be attributed to the fact that the exposure stacks were com-
prised of only three images. Because this algorithms assigns
weights to each pixel by considering its similarity to the 3D
neighborhood around it, using only three images may have
given rise to a too small neighborhood. Some of the artifacts
with their possible causes are presented in Figure 6.

The worst performing deghosting algorithm was found to
be Silk and Lang’s method [SL12]. Overall, this algorithm
was preferred the fewest number of times in pairwise com-
parisons, receiving a score even lower than the no deghosting
condition. We attribute this to the artifacts produced by this
algorithm. In the outputs of Silk and Lang, it is observed that,
especially in low-lit surfaces, the outputs have black regions
(even if these regions are completely static). In addition, pos-
sibly due to the blending operation used, the transition in the

super-pixel boundaries may become very sharp or they may
produce color discontinuities as shown in Figure 7.

In overall, the obtained rankings give confidence about
the reliability of the subjective experiment. Sen et al. and
Hu et al., being very similar algorithms, shared the first
ranking. The no deghosting control condition and Silk and
Lang’s [SL12] algorithm occupied the last position, a find-
ing that is expected from the artifacts in their outputs. Simple
deghosting and Grosch’s methods [Gro06] received rankings
that are similar to each other. This is also expected as both
algorithms are similar but the simple deghosting includes a
Laplacian blending stage whereas Grosch’s algorithm sim-
ply uses pixels from the reference exposure.

5.2. Runtime Performance

Running times of each algorithm is provided in Table 6. The
running times were obtained by measuring the CPU time
used by each algorithm on a computer platform with Intel
Core i7-3770 CPU @ 3.40 GHz, 8 GB RAM and NVIDIA
GeForce GT 630 GPU.

For Sen et al. [SKY∗12], the “normal” quality setting was
used. For Khan et al. [KAR06], the iteration count was set
to 10. However, we report the running times per-iteration as
we observed that 4−5 iterations were sufficient for conver-
gence, most of the time. All algorithm implementations were
in MATLAB, excluding Grosch [Gro06] which was kindly
provided to us by the author in executable format. The fast
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Figure 6: Outputs of Khan et al. [KAR06] in (a) FastCars, (c) Gallery2 and (e) Flag scenes. The problematic regions are
magnified in (b), (d), (f) and (h). In FastCars scene, the critical assumption of the algorithm does not hold. A vehicle in the
scene takes the position of another vehicle from the previous frame; therefore, the majority of the exposures do not capture the
background in these regions, which is required for a correct pixel-weighting operation. This situation results in even increased
amount of weights where the pixels are affected by the motion in (b). Since there is not a semantic constraint in the pixel down-
weighting operations, two copies of the same person appears in the Gallery2 (d) scene. (f) shows the output of Khan et al. in the
presence of deformable body motion. The overlapping parts of the moving object are kept whereas other parts are cleared by
the algorithm giving rise to a broken appearance. In (h), the same region is shown with no deghosting operation for reference.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 7: Outputs of Silk and Lang [SL12] for (a) Cafe, (c) Candles, (e) Flag, and (g) Shop2 scenes. In the outputs of the
algorithm some of the regions become black, especially if the they have low pixel-intensity values in the input images. In (b),
two such regions are shown. In (d), two regions are shown where the boundaries of super-pixels are visually noticeable. (e) and
(f) shows the observed color artifacts after the blending operation. (h) shows a region in Shop2 scene where multiple sources
are used to fill an underexposed region.

running times can be attributed to its being native code and
the algorithm’s utilization of the GPU.

From Table 6 we can observe that Sen et al.’s and Hu
et al.’s methods take about 3− 4 minutes to process an ex-
posure stack comprised of 3 exposures with each exposure

1024×683 resolution. Khan et al.’s running times take about
10 minutes for a single iteration of the algorithm. The other
methods are much faster, especially Grosch’s method, pro-
ducing results in about a second (including disk IO times).
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Table 6: Algorithm running times in seconds. Please refer to text for details.

Grosch Khan et al. Sen et al. Silk and Lang Hu et al. SimpleDG NoDG
Cafe 1.06 615.03 218.08 24.95 208.28 8.80 3.89

Candles 1.09 624.05 308.77 8.17 299.34 7.03 2.30
FastCars 1.05 620.86 184.77 11.77 239.42 7.72 2.70

Flag 1.06 616.94 161.09 12.64 232.52 6.36 3.41
Gallery1 1.02 613.92 173.36 18.44 221.47 6.42 2.86
Gallery2 0.98 611.28 218.83 14.66 243.59 6.45 2.05

LibrarySide 1.09 616.89 238.58 18.09 215.77 7.58 2.72
Shop1 1.00 614.42 203.77 11.02 215.91 6.78 2.53
Shop2 0.95 613.14 199.63 10.61 218.44 6.88 3.45

WalkingPeople 1.09 617.96 190.97 12.92 208.83 6.88 3.47
Average 1.04 616.45 209.78 14.33 230.36 7.09 2.94

5.3. Objective Evaluation

Conducting a large-scale subjective experiment for compar-
ing HDR deghosting algorithms is a challenging task. With
new algorithms being proposed on a regular basis, the find-
ings obtained from a subjective experiment can be quickly
outdated. Therefore, it is important to develop objective met-
rics which can be used to quickly and quantitatively eval-
uate the performance of newly proposed algorithms. Here,
we share the results for two simple metrics that seemed
plausible to be among the first attempts in this direction.
To measure how well these metrics can evaluate deghost-
ing performance, we calculated Spearman’s rank correlation
(ρ) between the scores from the subjective experiment and
the scores of these metrics which produces a score in range
[−1,1].

Deblurring metric. The first metric that we tested was Liu
et al.’s [LWC∗13] no-reference metric for evaluating the
quality of motion deblurring. The motivation for using this
metric is that blurring artifacts and ghosting artifacts are
somewhat similar and therefore a metric for the former may
be used to predict the quality for the latter. The results of this
metric are provided in Table 7. In this table, larger values in-
dicate higher predicted quality. Spearman’s rank correlation
coefficients between the rankings according to this metric
and the subjective experiment are given in the last column of
this table. In general, it can be seen that there is low correla-
tion, a finding which indicates that Liu et al.’s metric is not
suitable for evaluating HDR deghosting algorithms.

Dynamic range. We experimented with the dynamic range
as a simple objective metric, knowing that even if this metric
gives high correlations it is not likely to be a sufficient met-
ric on its own as one can easily create an extremely high dy-
namic range image full of artifacts. However, the motivation
for this metric was that, in general, as the ghosting artifacts
appear due to blending between different objects they tend to
result in reduced dynamic range (e.g., consider a sharp can-
dle against a candle that has ghosting artifacts). Therefore,

a higher dynamic range may indicate a better deghosting re-
sult. The results of this metric and its correlation with the
results of the subjective experiment is shown in Table 8. The
last column of this table reports Spearman’s rank correlation
coefficient. We can observe that there is a higher degree of
correlation between the metric’s results and the experimental
results. However, for some scenes there is zero or negative
correlation. As such, it can be argued that dynamic range has
a promise but it must be either used as an auxiliary metric be-
side a more advanced metric or customized, for example, to
only include pixels in ghost regions.

6. Conclusions and Future Work

In this study, an extensive review of the state of the art
in HDR deghosting literature and a novel hierarchical tax-
onomy of deghosting algorithms is provided. Using this
taxonomy, we classified approximately 50 HDR deghost-
ing algorithms. We also discussed the distinguishing char-
acteristics of the algorithms within each class. This survey
also included a subjective experiment involving 63 partici-
pants to compare 6 deghosting algorithms with varying de-
grees of complexity. These algorithms were evaluated us-
ing 10 scenes with different characteristics. This benchmark
dataset, and the proposed evaluation framework, is suitable
to be used in future evaluation studies as well. Finally, we
experimented with the possibility of using objective metrics
to quantitatively compare HDR deghosting algorithms. To
this end, two metrics, one designed for evaluating deblurring
algorithms, and one based on a simple dynamic range mea-
sure were utilized. Given the increased activity in this field,
we identify objective evaluation of ghost removal techniques
as the most important future work direction.
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Table 7: The objective scores obtained using Liu et al. [LWC∗13] (larger is better) and Spearman’s rank correlation ρ with the
subjective experiment scores. The average correlation ρ̄ =−0.001.

Grosch Khan et al. Sen et al. Silk and Lang Hu et al. SimpleDG NoDG ρ

Cafe 5.68 4.60 4.86 8.44 4.68 7.31 6.33 -0.46
Candles -0.31 -0.74 -0.42 -1.03 -1.14 -0.12 -1.17 0.25

FastCars 1.36 1.54 1.20 0.72 1.36 1.91 1.00 0.45
Flag 0.03 -0.73 -0.32 -0.01 -0.38 0.46 -0.50 0.88

Gallery1 1.29 0.48 1.02 1.06 1.39 1.87 1.42 0.04
Gallery2 0.77 -0.28 -0.37 0.37 -0.19 0.53 0.06 -0.11

LibrarySide 4.90 4.13 3.82 5.42 3.69 4.38 3.55 -0.04
Shop1 9.61 8.29 8.45 9.69 8.77 10.31 9.24 -0.18
Shop2 6.88 6.16 6.38 7.42 6.06 7.07 6.33 -0.02

WalkingPeople 1.61 1.94 1.72 3.04 1.53 2.03 1.82 -0.82

Table 8: Dynamic Range computed in log10 units with 1% of the lightest and darkest pixels excluded and Spearman’s rank
correlation ρ with the subjective experiment scores. The average correlation ρ̄ = 0.45.

Grosch Khan et al. Sen et al. Silk and Lang Hu et al. SimpleDG NoDG ρ

Cafe 2.63 2.55 2.61 2.60 2.46 2.50 2.47 0.00
Candles 2.66 2.43 3.03 2.67 2.85 2.66 2.65 0.77

FastCars 1.12 1.10 1.18 1.10 1.15 1.17 1.10 0.85
Flag 1.40 1.49 1.50 1.49 1.46 1.44 1.45 -0.52

Gallery1 1.59 1.49 1.59 1.56 1.56 1.57 1.55 0.52
Gallery2 2.41 2.24 2.56 2.14 2.31 2.31 2.29 0.90

LibrarySide 1.78 1.79 1.93 1.60 1.87 1.75 1.76 0.64
Shop1 2.20 2.04 2.39 2.00 2.33 2.43 2.10 0.75
Shop2 2.68 2.45 2.72 2.89 2.64 2.70 2.55 0.29

WalkingPeople 1.94 2.06 2.07 1.83 2.02 2.05 2.05 0.25
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