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Abstract. Recently, intermediate feature maps of pre-trained convo-
lutional neural networks have shown significant perceptual quality im-
provements, when they are used in the loss function for training new
networks. It is believed that these features are better at encoding the
perceptual quality and provide more efficient representations of input
images compared to other perceptual metrics such as SSIM and PSNR.
However, there have been no systematic studies to determine the un-
derlying reason. Due to the lack of such an analysis, it is not possible
to evaluate the performance of a particular set of features or to im-
prove the perceptual quality even more by carefully selecting a subset
of features from a pre-trained CNN. This work shows that the capa-
bilities of pre-trained deep CNN features in optimizing the perceptual
quality are correlated with their success in capturing basic human vi-
sual perception characteristics. In particular, we focus our analysis on
fundamental aspects of human perception, such as the contrast sensi-
tivity and orientation selectivity. We introduce two new formulations to
measure the frequency and orientation selectivity of the features learned
by convolutional layers for evaluating deep features learned by widely-
used deep CNNs such as VGG-16. We demonstrate that the pre-trained
CNN features which receive higher scores are better at predicting hu-
man quality judgment. Furthermore, we show the possibility of using our
method to select deep features to form a new loss function, which im-
proves the image reconstruction quality for the well-known single-image
super-resolution problem.

1 Introduction

The loss functions based on features from deep convolutional neural networks
(CNNs) pre-trained for image classification have been shown to correlate well
with human quality perception and have successful applications in image pro-
cessing problems [35]. The perceptual loss proposed by Johnson et al. [11] was
one of the first studies which showed how effective the distance between feature
representations of pre-trained CNNs could be for improving perceptual quality,
especially when they are used in loss functions for training other networks. The
effectiveness of the loss functions based on deep CNN representations has been
further demonstrated in more recent works [35,3,25]. Consequently, the percep-
tual loss is now widely used in many common image enhancement and recon-
struction tasks such as super-resolution, style transfer, denoising, etc. [17,30,7].
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Unfortunately, the analysis of underlying characteristics of the deep features
as well as the explanation of their superior performance in quantifying visual
distortions are still incomplete.

Classical models that predict the magnitude of the perceived difference be-
tween images rely on models of the human visual system (HVS). They are usually
easy to interpret, evaluate, and fine-tune as necessary. On the other hand, neural
networks are mostly used as non-linear black-boxes with little intuition on the
process leading to their output, which makes a tractable analysis nontrivial. Most
of our understanding of visual quality perception is obtained from psychophys-
ical experiments that investigate basic phenomena such as the effect of spatial
frequency and orientation of stimuli on perception. Those studies resulted in
well-known HVS models, such as the contrast sensitivity function (CSF), which
allow us to perceptually quantify visual stimuli and visibility of differences [5]. In
this work, we investigate how visual information is encoded by pre-trained CNN
features and take a step towards explaining the remarkable success of those fea-
tures in improving the perceptual quality when they are used in the loss function
for training new CNNs. We focus our analysis on two fundamental properties
of the HVS, namely, the contrast sensitivity and orientation selectivity. In or-
der to quantify the frequency and orientation selectivity of different channels
in pre-trained CNNs, we compute the hidden intermediate network features for
input image patches of synthesized sinusoidal gratings with a wide range of spa-
tial frequencies and orientations. We then formulate two measures of the spatial
frequency and orientation selectivity of feature channels based on mean channel
activations. This allows us to analyze the role of those two perceptual attributes
and how they are encoded in the network. Although HVS quality perception is
a complex process and it is not limited to spatial contrast frequency and orien-
tation perception, these two attributes play an important role in driving quality
perception by determining visibility based on frequency characteristics of image
distortions and structural differences. Consequently, these two attributes are the
foundation of many classical models [26,32,23,19,24]. The main hypothesis of
this work is that in a pre-trained convolutional layer, the channels that share
more similarities with the human CSF and those that offer better orientation
selectivity are more useful for optimizing perceptual quality compared to the
other channels in the layer.

We verify our hypothesis using standard subjective tests such as quality as-
sessment (QA test) [27], two-alternative forced choice (2AFC) experiments, and
just-noticeable difference (JND) tests, which are psychophysical experiment pro-
tocols designed for measuring the correlation of visual quality predictions with
human assessment. We rank and group the channels in different CNN layers into
subsets according to our frequency and orientation selectivity metric scores and
demonstrate that the groups of features with higher metric scores provide better
perceptual quality. We repeat our experiment across multiple layers of different
pre-trained image classification networks such as the VGG-16 [29], AlexNet [15],
ShuffleNet [36] and SqueezeNet [9]. We demonstrate that using very large fea-
ture sets motivated by the goal of having a comprehensive representation of data
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is not necessarily a good practice. Instead, it may lead to quality degradation
due to the inherent redundancy of features. We also analyze the effect of feature
selection on the performance of calibrated and commonly used LPIPS metric in
JND, 2AFC, and mean-opinion-scores MOS correlation tests [35].

2 Deep CNN Representations as Perceptual Quality

Features

The visual quality obtained using deep learning solutions for image processing
tasks, such as super-resolution or style transfer, is primarily driven by the par-
ticular loss function used during training. The performance of those solutions is
mostly defined by the visual quality as perceived by a human observer. Simple
per-pixel loss functions do not optimize the perceived quality because they do not
resemble complex neurological and cognitive processes of the HVS. As a result, a
direct comparison of pixel values in the loss function yields sub-optimal results.
A better solution is to use feature maps from deep CNNs that are pre-trained
for image classification. These maps represent images transformed in a higher-
dimensional space that is more closely related to the processing performed by
the HVS. The resulting distance measure, so-called perceptual loss Lp, between
two images, I1 and I2, is usually defined as:

Lk
p (I1, I2) =

1

M ·H ·W

M
∑

m=1

‖Φk
m(I1)− Φk

m(I2)‖
2
2, (1)

where Φk
m(·) is the feature map from mth channel in kth convolutional layer of

the particular deep CNN used. M is the total number of channels where the
output of each channel is an H×W feature map. In practice, training a network
by minimizing the loss Lk

p (Iout, IGT) between the output, Iout, and the ground
truth, IGT, improves the correlation with human quality judgments.

3 Problem Formulation

The use of loss functions based on deep CNN representations, as defined in
Eq. 1, has been remarkably successful for optimizing perceived quality in the
past. However, the source of this success is not analyzed from the visual per-
ception perspective. Also, some feature channels perform better than others.
These observations bring two important questions. First, why are some channels
within a layer perform better than the others, and can we establish a connection
between visual mechanisms involved in human perception and those features?
Second, can we use the insight gained from establishing such a connection to
rank the feature channels and carefully select a better subset by eliminating the
redundant feature channels that correlate poorly with human perception?

Establishing a connection between human visual perception and CNN rep-
resentations is difficult because of the ‘black-box’ nature of neural networks.
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Fig. 1: Experimental setup: A pre-trained network is stimulated by gratings of
varying spatial frequency (left) and gratings of fixed spatial frequency by varying
orientation (right). We analyze the mean activations and derive a measure of
spatial frequency and orientation tuning for each channel.

In Sec. 4, we introduce a methodology to quantify the spatial frequency and
orientation tuning of channels in pre-trained CNNs. Using this formulation, we
interpret and explain deep CNN features as perceptual quality features by us-
ing basic human visual perception models, which rely on spatial frequency and
orientation characteristics of input stimuli. In essence, the formulation in Sec. 4
acts as a bridge between attributes of deep representations and fundamental
visual perception properties.

4 Perceptual Efficacy of Deep Features

Our method is inspired by the grating stimulus experiments traditionally used
by neuroscientists to investigate the spatial frequency and orientation tuning
dynamics in the HVS [16]. Those experiments are based on the observation
that a particular spatial frequency and orientation of a visual signal will elicit a
spike in the neural activation of the visual cortex. We follow a similar approach
and measure the spatial frequency selectivity and orientation tuning of different
channels in activation maps of pre-trained deep CNNs.

4.1 Inputs

To quantify the spatial frequency tuning, we generate sinusoidal gratings of a
fixed contrast and varying spatial frequencies. We denote these gratings by If
where f is the grating frequency and use them to stimulate pre-trained CNNs.
Then, we compute the spatial mean of the activation maps for each network
channel as a function of the spatial frequency of the input signal. In this step, it
is crucial to isolate the measurements from the effects of spatial orientation. To
this end, we used radially symmetric grating patterns as our inputs. To quantify
orientation selectivity, we repeat the process with a set of differently oriented
sinusoidal gratings, denoted by Iθ where θ is the orientation. The gratings have
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a fixed spatial frequency that is selected as the peak of the CSF. Fig. 1 shows
an overview of this analysis and sample input patterns. Analysing the response
of CNN channels to gratings serves as a novel approach to visualize learned
features, similar to [34,28,4].

4.2 Measurement of the Spatial Frequency Sensitivity

The previous investigations on the early stages of the human visual cortex show
a behavior resembling a spatial frequency analyzer [21]. Therefore, a significant
portion of human visual perception is driven by the spatial frequency content
of stimuli. The importance of understanding the effects of spatial contrast on
low-level vision leads to one of the most widely studied models of the HVS,
known as the contrast sensitivity function. The CSF depicts the HVS capability
of perceiving contrast changes as a function of spatial frequency. Human ob-
servers have lower contrast discrimination thresholds at the spatial frequencies
where the CSF reaches a high value (typically between 6− 8 cycles per degree).
This corresponds to a higher probability of perceiving distortions, which contain
spatial frequencies for which the contrast sensitivity function is high.

In our analysis, we assume that channels that exhibit higher sensitivity to
changes in the spatial frequency are more likely to detect visual distortions since
these usually change the spatial frequencies characteristic of an image. Addi-
tionally, the channels sensitive to perceptually-relevant distortions should follow
the characteristic of the CSF. Consequently, we hypothesize that channels that
are good for optimizing perceived quality are those which have high frequency
sensitivity for the frequencies with a high CSF value. We quantify this property
of activation map channels by µ1 score:

µ1(k,m) =
∑

f

CSF (f) ·

∣

∣

∣

∣

∂

∂f
akm(If )

∣

∣

∣

∣

, (2)

where k is the index for the convolution layer, m is the feature map index in each
convolution layer, CSF (·) is the contrast sensitivity function, akm is the mean
activation of the feature map and f is the spatial frequency in cycles per degree.
µ1 quantifies the average frequency sensitivity of a CNN channel weighted by
the CSF over different spatial frequencies. Channels with higher µ1 values should
deliver better perceptual features according to our hypothesis.

In Fig. 2(a), we provide mean activation plots of two channels from a deep
CNN as a function of input spatial frequency. We observe that Channel-1 has
a higher frequency sensitivity compared to Channel-2 at the frequencies where
the CSF reaches its peak. From a perceptual perspective, Channel-1 has the
desired behavior of responding to spatial frequency changes where the HVS has
a higher sensitivity. Fig. 2(b) shows sample frequency tuning characteristics and
the resulting values of µ1.
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Fig. 2: (a) Frequency sensitivity (b) Examples of the varying µ1 for channels in
the ReLU2 2 layer of the VGG-16 (denoted in red).

4.3 Measurement of the Orientation Selectivity

In addition to the underlying spatial frequency, orientation also plays an impor-
tant role in the perception of visual stimuli. Previous studies indicate that the
HVS presents orientation selectivity in the primary visual cortex for structure
representation [2,6]. Motivated by this fact, orientation selectivity is also a de-
sired property for activation maps to detect artifacts in the form of structural
deformations in visual stimuli.

We measure the orientation selectivity of activation maps by our quantitative
score, µ2, which is based on the average squared difference between the activation
and its peak value across all orientations of the input stimulus. For a channel
m in layer k, the maximum activation with respect to input gratings of varying
orientations θ can be calculated as:

âkm = max
θ

akm(Iθ). (3)

Based on âkm, we define our orientation selectivity score µ2 as:

µ2(k,m) =
∑

θ

(

akm(Iθ)− âkm
)2
. (4)

The above score resembles the statistical measure of kurtosis, but it is more
efficient to compute for neural networks because it does not require the compu-
tation of standardized moments. Using Eq. 4, we compute the orientation selec-
tivity of different channels in a pre-trained deep CNN from the inputs described
in Sec. 4.1. In Fig. 3(a), the orientation selectivity characteristics of two selected
sample channels from a network layer are shown. We observe that Channel-1 has
a more significant orientation selectivity around 0◦ compared to Channel-2. The
higher selectivity of Channel-1 makes it a better candidate for detecting struc-
tural deformations which are visible to human observers. Fig. 3(b) shows how
mean activations change for a selected subset of channels from a deep CNN with
respect to the stimulus orientation and the corresponding orientation selectivity
scores computed using Eq. 4.
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Fig. 3: (a) Orientation Selectivity (b) Examples of the varying µ2 for channels
in the ReLU4 2 layer of the VGG-16 (denoted in red).

4.4 Perceptual Efficacy (PE)

We combine our feature and orientation selectivity scores from Eq. 2 and 4 into a
single scalar representing the overall goodness of a feature channel for measuring
and optimizing the perceptual quality. We call it the Perceptual Efficacy (PE).
The perceptual efficacy of a channel with index m in layer k is the product of
normalized µ1 and µ2:

PE(Φk
m) =

µ1(k,m) · µ2(k,m)
∑

m µ1(k,m) ·
∑

m µ2(k,m)
. (5)

5 Experiments

We conduct a set of validation experiments and show that the feature channels
with higher PE scores have better overall correlation with subjective human
quality judgments than the channels with lower PE scores. In our analysis, the
set of feature channels F k, from layer k of a pre-trained CNN is:

F k = {Φk
0 , Φ

k
1 , . . . , Φ

k
M}. (6)

We split F k into subsets which consist of the channels with the highest and
lowest PE scores, denoted by Hk ⊆ F k and Lk ⊆ F k, respectively. Furthermore,
we control the cardinality of these subsets by changing the number of channels
in each set based on percentile rank of channel PE score. Using the ranking of
channels according to their PE scores, the set which consists of the channels
with the top x% of PE scores is:

Hk-x = {Φk
i |PE(Φk

i ) ≥ prck100−x}. (7)

Similarly, the set of channels with the lowest PE scores is:

Lk-x = {Φk
i |PE(Φk

i ) ≤ prckx}, (8)
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Fig. 4: Results of Quality Assessment (QA) test. (a) Spearman’s correlation
(SROCC) between human quality judgements (DMOS) and different subsets
of feature channels (F , H and L) from various deep CNNs. A higher SROCC
value represents a performance closer to the human quality judgments. (b) Re-
gression analysis between DMOS values and losses estimated by two subsets of
feature channels, H-5 and L-5, from GoogleNet. We observe that smaller subsets
of feature channels (denoted by H) selected according to our PE score achieve
a better SROCC and a better fit in DMOS regression.

where prckx is the xth percentile of PE scores in layer k. For brevity, we omit the
superscript k when the subsets of channels in an experiment belong to the same
layer of the network. To validate our hypotheses that lead to the formulation of
PE, we compare the performance of channels in Hk and Lk in different tests,
which are commonly used by the previous studies to measure the correlation
with human perceptual quality assessment.

5.1 Quality Assessment (QA) Tests

QA tests are one of the most widely used techniques for benchmarking percep-
tual quality metrics. They aim to compute the correlation between the quality
metrics and human subjective quality assessment scores called Differential Mean
Opinion Scores (DMOS) [27]. DMOS is a quantitative representation of how hu-
man observers perceive perceptual differences between natural and distorted im-
ages, and they are collected by conducting subjective experiments in a controlled
environment where the observers evaluate varying levels of different distortion
types. The performance of perceptual quality metrics is evaluated by computing
statistics such as the RMSE (Root Mean Square Error), LCC (Linear Correla-
tion Coefficient) and SROCC (Spearman Rank Order Correlation Coefficient)
between the metrics and DMOS. Lower RMSE or higher LCC and SROCC indi-
cate a better correlation with human perception of differences. Here, we report
only the SROCC for simplicity. For a more detailed analysis and tests including
all three evaluation metrics, please refer to the supplementary material.

For the purpose of this test, we compute the difference between images using
the definition of perceptual loss in Eq. 1 with different subsets of channels, as
defined in Sec. 5. We use the images and DMOS scores from both the LIVE
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Deviation (SD). Please refer to Sec. 5 for the definition of the channel subsets
denoted by F , L and H.

image quality dataset [27] and multiple distortion dataset [10] as our inputs.
The two datasets include the distortions commonly observed in image processing
applications such as Gaussian Blur, JPEG compression, JPEG2000, and White
Noise, as well as combinations of these distortions.

We hypothesize that subsets of channels in Hk have a better correlation with
DMOS compared to the channels in Lk. In order to show that this generalizes
across different network architectures, we conduct the tests on different layers
of several pre-trained image classification CNNs such as AlexNet, ShuffleNet,
SqueezeNet, and VGG-16. The results (Fig. 4) demonstrate that indeed, higher
correlations are achieved for the sets of channels with higher PE scores.

5.2 Just Noticeable Difference (JND) Test

The Berkley-Adobe Perceptual Patch Similarity Dataset (BAPPS) is a percep-
tual similarity dataset which consists of image pairs and measures of Just Notice-
able Differences between them [35]. In the study conducted using this dataset,
human observers were asked to determine whether a pair of images were percep-
tually the same or different. The dataset includes some distortions like spatial
translation which are not represented in the other datasets that we used. For
each pair of images, the study includes responses from three different observers
who make a binary decision (same or different). If the difference between two
images is below the detection threshold of observers, the responses tend to be
in agreement as “same”. For each observer, the net score for each pair of images
is represented by a rational number that can be either 0 (consensus on “same”),
1 (consensus on “different”), 1/3 (one out of the three reports “same”) or 2/3
(one out of the three reports “different”). In this test, perceptual metrics should
be able to detect the distortions visible to humans and successfully assign the
images into the four classes represented by the rational scores. Similarly to the
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Fig. 6: Visualization of the information encoded in different sets of feature chan-
nels with high (H-10) and low (L-10 and L-50) PE scores.

QA test, we compute the difference between image pairs using different subsets
of feature channels selected according to our PE scores. We then compute the
JND score as a percentage of images correctly classified (Fig. 5(a)). We conduct
this test using the CNN-based distortion set, which is highly relevant to the deep
learning solutions but not represented in QA tests. The results show that, also,
for this test, our PE measure is beneficial.

5.3 2AFC Similarity Tests

In the 2AFC test, two distorted images (I1, I2) and a reference image IGT are
shown to observers who are asked to choose the distorted image that is closer to
the reference [35]. Perceptual metrics are evaluated by measuring their agreement
with the pair-wise human judgments as follows: Scores from a perceptual metric
are converted to binary responses (I1 or I2) depending on the distance of those
images to IGT, resembling the binary decisions of human observers. Assuming
that the fraction p of the observers choose I1 and (1−p) choose I2, the perceptual
metric is assigned a “credit” of p if the metric indicates I1 and (1−p) otherwise.
As a result of this process, the perceptual metric that successfully chooses more
popular images among human observers accumulates a higher amount of credit
indicating their performance. In these tests we again use the BAPPS dataset
and the computed scores are shown in Fig. 5(b).

5.4 Visual Evaluation of the Features

To visualize the image information encoded at different layers of a CNN, it is
possible to reconstruct an image from a set of CNN features [22]. We apply
this method to investigate the information encoded by different sets of feature
channels with high and low PE scores (Fig. 6). We observe that the channels
with high PE scores encode information that can be considered more visually
relevant, e.g., edges, while color is encoded in the channels with lower PE scores.
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Fig. 7: Results from the Super-Resolution (SR) experiment. (a) shows the change
in NRQM [20] and SSIM [31] for L2 and contextual (cx) loss. Weighting the chan-
nels used in contextual loss proportionally to their PE scores moves the network
towards a more optimal point in the perception-distortion plane represented by
NRQM and SSIM metrics. In (b) we provide sample outputs from the networks
trained with different losses (SR scale factor: ×4).

5.5 Super-Resolution

We apply the results of our analysis to the widely used contextual loss for
super-resolution (SR) [25]. The contextual loss (cx-loss) is known for its bet-
ter perceptual quality in SR applications compared to the perceptual loss of
Johnson et al. [11]. We observe that weighting feature channels according to PE

is a promising approach for improving contextual loss performance. We perform
an ×4 SR experiment using the VDSR [13] network, trained on the images of
the DIV2K [1] dataset. The loss function used was a combination L2 loss and
the contextual loss (using ReLU2 2 of the VGG-16).

Ltotal = α · L2 + (1− α) · Lcontextual (9)

The recent work of Blau and Michaeli [3] has drawn attention to the presence
of a tradeoff between the improvements in perceptual quality and pixel-wise
error measures in image reconstruction tasks. Recently some approaches such
as the adversarial training started providing the flexibility of controlling this
tradeoff during training by carefully tuning the weights used in their loss func-
tions. In Eq. 9, it is possible to move along this tradeoff boundary by changing
α. Since it is trivial to move along this line in the perception-distortion plane
without changing the underlying reconstruction method, it has become neces-
sary to use multiple metrics that evaluate both perceptual and low-level visual
quality aspects to accurately evaluate the image quality. Motivated by this ob-
servation, we evaluated the reconstruction quality of several networks with dif-
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ferent perception-distortion tradeoff. We additionally considered weighting the
features used in the loss function according to our PE scores. We observe that
the weighting improves the results according to both perceptual quality and
pixel-wise distortion metrics (Fig. 7).

5.6 Discussion

The Quality Assessment (QA), Just Noticeable Difference (JND) and 2AFC
validation experiments that we conducted show that the loss functions which
use the feature channels with the highest PE scores have better correlation
with human quality judgments. This proves our hypothesis on the deep feature
representations and it also shows that even small subsets of channels carefully
selected according to higher PE scores are successful at picking up just noticeable
distortions and they may easily outperform the complete set of channels in a
layer. We believe that leaving out the feature channels with lower PE scores
reduces the redundancy in the optimization by focusing on the visual properties
which are more dominant in driving human quality perception.

Visual evaluation of the information encoded in different subsets of feature
channels also supports this observation from QA, JND and 2AFC tests. The
result of this analysis on two different layers of VGG16 and AlexNet in Fig. 6,
leads us to two interesting observations. First, we see that the channels with
high PE scores (H-10) encode the medium spatial frequencies which are closer
to the peak of the CSF. Those frequencies are essential to recover important
details of natural textures and image statistics in image reconstruction tasks.
Second, the visual information encoded in the channels with high PE scores
represents achromatic contrast whereas the channels with the lowest PE scores
(L-10) focus more on color. This observation is also in agreement with previous
psychophysical experiments which show that HVS is better at discriminating
luminance details compared to color [14]. We believe that these two properties of
feature channels have important implications on the sensitivity of these features
for detecting visible distortions.

Fig. 7 shows that weighting the channels of the contextual loss according to
PE, is a promising approach for improving perception-distortion image charac-
teristics. We observe the tradeoff between perceptual quality and distortion by
changing the α parameter in Eq. 9. Weighting the feature channels according to
their PE scores improves overall quality by moving the tradeoff line towards the
origin in the perception-distortion plane. Using only L2 loss by setting α = 1
results in the poorest NRQM [20] score as expected because L2 does not mea-
sure the perceptual quality. In Fig. 7(b), we provide some sample images from
this experiment where the quality improvement obtained by weighting the cx-
loss is visible in the sample images. We believe that our analysis and showing
potential improvement in well-known perception-distortion tradeoff will inspire
further investigations in this promising research direction.
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6 Comparison with LPIPS and Other Metrics

We also evaluate how our strategy for selecting features improves the prediction
of perceptual data when compared to other methods. In Fig. 8, we compare
the performance of our H-10 to LPIPS, original AlexNet, SSIM, and L2 using
different tests. Our method outperforms the last two methods in all tests. Below,
we focus our discussion on the comparison to LPIPS, which is a full-reference
perceptual quality measure based on pre-trained CNN representations with many
successful applications [37,12,8,18,33].

First, we perform two QA tests, using images and DMOS scores of the LIVE
multi-distortion dataset with multiple types of distortions which are sometimes
combined, making the distortions difficult to model. Combining distortions in-
crease the sample diversity that are unseen by LPIPS during training. We argue
that this is a fair comparison since our technique does not require training. Sec-
ond, we perform a QA test with images with a much simpler distortion (Gaussian
blur). We employ AlexNet LPIPS framework as it has the best performance. Ad-
ditionally, we also include JND and 2AFC tests, for which LPIPS was trained.
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Fig. 8: The correlation of metric scores with MOS for images corrupted with a
combination of multiple (a) and single (b) distortions from the LIVE dataset. (c)
JND test scores for CNN distortions. (d) 2AFC scores for frame-interpolation.

Fig. 8(a) shows that LPIPS might not always have the best correlation with
MOS, especially for the distortions that are not represented in the training set.
The vanilla five-layer AlexNet framework performs better in that setting. Most
interestingly, using only 10% of good channels (H-10) from a single layer of
a pre-trained AlexNet demonstrates a higher correlation with human opinions.
Fig. 8(b) shows that for images with Gaussian blur, the vanilla AlexNet still has
slightly better correlation with human MOS compared to LPIPS, and even 10%
of good channels from the ReLU1 layer can perform better. For JND and 2AFC
tests LPIPS outperforms other uncalibrated metrics (Fig. 8(c) and (d)).

The better performance of LPIPS on JND and 2AFC tests is expected since
the metric was trained for these tasks. On the other hand, we believe that its
lower performance on MOS dataset is because it relies on pair-wise judgments of
similarity with the reference images, which may not capture how differently hu-
mans perceive the transitions in distortion levels. This is important because, in
some cases, MOS-based experiments may be preferred to analyze image quality
[27]. The experiment also shows that feature selection is critical for the design of
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an effective perceptual loss. In some cases, features trained specifically on per-
ceptual data can be outperformed by carefully selected features from a network
trained for a different task, e.g., classification. To summarize, the conclusions to
be drawn from this analysis are:

1. LPIPS is very good for patch-based similarity but has room for improvement
in terms of overall correlation with MOS, especially on novel distortions.

2. Selection of the feature space plays a very important role in how well feature
distances correlate to human MOS, using as many features as possible does
not necessarily correlate with better performance.

3. Is it beneficial to integrate good feature selection with a modified training
methodology to create metrics that correlate well with both human MOS
and patch-wise judgments. Analysis of the implications of MOS-based and
patch-based tests is left as an open problem for future work.

7 Conclusion

In this work, we explored feature characteristics of deep representations and
compared them with fundamental aspects of HVS using our frequency sensitiv-
ity and orientation selectivity measures. We showed that the features selected
according to higher CSF-weighted frequency sensitivity and higher orientation
selectivity exhibit a higher correlation with human quality judgments.

The general practice when training neural networks is using the full set of
available feature channels from a pre-trained deep CNN. Our findings suggest
that a more optimal solution is to focus the loss function on a subset of features
which are ranked high using our measures. We validated this hypothesis on
an example of super-resolution by re-weighting the features according to their
frequency sensitivity and orientation selectivity. We demonstrated that such a
strategy achieves better perception-distortion trade-off.

We believe that our analysis is an essential step towards better understand-
ing of the connection between human visual perception and learned features.
Furthermore, our work opens new research venues by laying a foundation for
analyzing the efficiency of deep feature representations. Extending our analysis
by more advanced aspects of perception, such as visual masking or temporal
sensitivity, is an exciting direction for future work which may lead to better un-
derstanding of deep representations and how they relate to human perception.
It is also possible to apply similar feature analysis and optimizations to other
domains with established models of human perception, e.g., audio processing.

Due to the growing popularity of deep learning in different domains, we
anticipate seeing more improvements in perceptual quality optimization as the
connection between HVS and learned features is established.
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